The Lagrangian Flamelet Model is formulated as a combustion model for large-eddy simulations of turbulent jet diffusion flames. The model is applied in a large-eddy simulation of a piloted partially premixed methane/air diffusion flame (Sandia flame D). The results of the simulation are compared to experimental data of the mean and RMS of the axial velocity and the mixture fraction and the unconditional and conditional averages of temperature and various species mass fractions, including CO and NO. All quantities are in good agreement with the experiments. The results indicate in accordance with experimental findings that regions of high strain appear in layer like structures, which are directed inwards and tend to align with the reaction zone, where the turbulence is fully developed. The analysis of the conditional temperature and mass fractions reveals a strong influence of the partial premixing of the fuel.

1.
P. E.
DesJardin
and
S. H.
Frankel
, “
Large eddy simulation of a nonpremixed reacting jet: Application and assessment of subgrid-scale combustion models
,”
Phys. Fluids
10
,
2298
(
1998
).
2.
S. M.
De Bruyn Kops
,
J. J.
Riley
,
G.
Kolaly
, and
A. W.
Cook
, “
Investigation of modeling for non-premixed turbulent combustion
,”
Flow, Turbul. Combust.
60
,
105
(
1998
).
3.
A. W.
Cook
and
J. J.
Riley
, “
A subgrid model for equilibrium chemistry in turbulent flows
,”
Phys. Fluids
6
,
2868
(
1994
).
4.
A. W.
Cook
,
J. J.
Riley
, and
G.
Kosaly
, “
A laminar flamelet approach to subgrid-scale chemistry in turbulent flows
,”
Combust. Flame
109
,
332
(
1997
).
5.
A. W.
Cook
and
J. J.
Riley
, “
Subgrid-scale modeling for turbulent reactive flows
,”
Combust. Flame
112
,
593
(
1998
).
6.
W. K.
Bushe
and
H.
Steiner
, “
Conditional moment closure for large eddy simulation of nonpremixed turbulent reacting flows
,”
Phys. Fluids
11
,
1896
(
1999
).
7.
P. J.
Colucci
,
F. A.
Jaberi
,
P.
Givi
, and
S. B.
Pope
, “
Filtered density function for large eddy simulation of turbulent reacting flows
,”
Phys. Fluids
10
,
499
(
1998
).
8.
A. R.
Kerstein
, “
A linear-eddy model of turbulent scalar transport and mixing
,”
Combust. Sci. Technol.
60
,
391
(
1988
).
9.
P. A.
McMurtry
,
S.
Menon
, and
A. R.
Kerstein
, “
A linear eddy sub-grid model for turbulent reacting flows: Application to hydrogen-air combustion
,”
Proc. Combust. Inst.
24
,
271
(
1992
).
10.
S. B.
Pope
, “
Pdf methods for turbulent reactive flows
,”
Prog. Energy Combust. Sci.
11
,
119
(
1985
).
11.
J. Y.
Chen
,
W.
Kollman
, and
R. W.
Dibble
, “
Pdf modeling of turbulent methane–air nonpremixed jet flames
,”
Combust. Sci. Technol.
64
,
315
(
1989
).
12.
V.
Saxena
and
S. B.
Pope
, “
Pdf calculations of major and minor species in a turbulent poloted jet flame
,”
Proc. Combust. Inst.
27
,
1081
(
1998
).
13.
F.
Gao
and
E. E.
O’Brien
, “
A large-eddy simulation scheme for turbulent reacting flows
,”
Phys. Fluids A
5
,
1282
(
1993
).
14.
J.
Jimenez
,
A.
Linan
,
M. M.
Rogers
, and
F. J.
Higuera
, “
A priori testing of subgrid models for chemically reacting non-premixed turbulent shear flows
,”
J. Fluid Mech.
349
,
149
(
1997
).
15.
C. K. Madnia and P. Givi, “Direct numerical simulation and large eddy simulation of reacting homogeneous turbulence,” in Large Eddy Simulation of Complex Engineering and Geophysical Flows, edited by B. Galperin and S. A. Orszag (Cambridge University Press, Cambridge, 1993).
16.
C.
Wall
,
B.
Boersma
, and
P.
Moin
, “
An evaluation of the assumed beta probability density function subgrid-scale model for large eddy simulation of nonpremixed, turbulent combustion with heat release
,”
Phys. Fluids
7
,
2522
(
2000
).
17.
C. D.
Pierce
and
P.
Moin
, “
A dynamic model for subgrid-scale variance and dissipation rate of a conserved scalar
,”
Phys. Fluids
10
,
3041
(
1998
).
18.
H. Steiner and W. K. Bushe, “Large eddy simulation of a turbulent diffusion flame with conditional source-term estimation,” Phys. Fluids (submitted).
19.
H.
Pitsch
,
M.
Chen
, and
N.
Peters
, “
Unsteady flamelet modeling of turbulent hydrogen/air diffusion flames
,”
Proc. Combust. Inst.
27
,
1057
(
1998
).
20.
H. Pitsch, “Unsteady flamelet modeling of differential diffusion in turbulent jet diffusion flames,” Combust. Flame (accepted).
21.
R. S.
Barlow
and
J. H.
Frank
, “
Effect of turbulence on species mass fractions in methane/air jet flames
,”
Proc. Combust. Inst.
27
,
1087
(
1998
).
22.
R. S. Barlow and J. Frank, www.ca.sandia.gov/tdf/Workshop.html, 1998.
23.
E. Hassel, www.ca.sandia.gov/tdf/Workshop.html, 1998.
24.
P.
Moin
,
K.
Squires
,
W.
Cabot
, and
S.
Lee
, “
A dynamic subgrid-scale model for compressible turbulence and scalar transport
,”
Phys. Fluids A
3
,
2746
(
1991
).
25.
N.
Peters
, “
Laminar diffusion flamelet models in non-premixed turbulent combustion
,”
Prog. Energy Combust. Sci.
10
,
319
(
1984
).
26.
N.
Peters
, “
Laminar flamelet concepts in turbulent combustion
,”
Proc. Combust. Inst.
21
,
1231
(
1987
).
27.
H.
Pitsch
and
N.
Peters
, “
A consistent flamelet formulation for non-premixed combustion considering differential diffusion effects
,”
Combust. Flame
114
,
26
(
1998
).
28.
N. Smith, J. Gore, and J. Kim, http://www.ca.sandia.gov/tdf/Workshop/Submodels.html, 1998.
29.
C. H.
Gibson
, “
Fine structure of scalar fields mixed ty turbulence. I. Zero-gradient points and minimal gradient surfaces
,”
Phys. Fluids
11
,
2305
(
1968
).
30.
N. Peters, Turbulent Combustion (Cambridge University Press, Cambridge, 2000).
31.
J. M. Donbar, J. F. Driscoll, and D. C. Carter, “Strain rates measured along the wrinkled flame contour within turbulent nonpremixed jet flames,” presented at the Joint Meeting of the U.S. Sections of the Combustion Institute, Washington, DC, 1999.
32.
S. S.
Girimaji
and
Y.
Zhou
, “
Analysis and modeling of subgrid scalar mixing using numerical data
,”
Phys. Fluids
8
,
1224
(
1996
).
33.
M. D. Smooke and V. Giovangigli, “Formulation of the premixed and nonpremixed test problems,” in Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames, edited by M. D. Smooke (Springer Verlag, Berlin, 1991).
34.
J. S.
Kim
and
F. A.
Williams
, “
Structures of flow and mixture-fraction fields for counter-flow diffusion flames with small stoichiometric mixture fractions
,”
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
53
,
1551
(
1993
).
35.
H. Pitsch and H. Steiner, “Scalar mixing and dissipation rate in large-eddy simulations of non-premixed turbulent combustion,” Proc. Combust. Inst. (accepted).
36.
V. R. Kuznetsov and V. A. Sabel’nikov, Turbulence and Combustion (Hemisphere, New York, 1990).
37.
B. J.
Boersma
,
G.
Brethouwer
, and
F. T. M.
Nieuwstadt
, “
A numerical investigation on the effect of the inflow conditions on the self-similar region of a round jet
,”
Phys. Fluids
10
,
899
(
1998
).
38.
H. N.
Najm
,
P. S.
Wyckoff
, and
O. M.
Knio
, “
A semi-implicit numerical scheme for reacting flow
,”
J. Comput. Phys.
143
,
381
(
1998
).
39.
I. Danaila and B. J. Boersma, “DNS of forced jet at low Reynolds numbers, in Proceedings of the 1998 Summer Program, Center for Turbulence Research, NASA Ames/Stanford University, 1998, p. 141.
40.
K.
Akselvoll
and
P.
Moin
, “
Large-eddy simulation of turbulent confined coannular jets
,”
J. Fluid Mech.
315
,
387
(
1996
).
41.
P. M.
Gresho
, “
Incompressible fluid dynamics: Some fundamental formulations issues
,”
Annu. Rev. Fluid Mech.
23
,
413
(
1991
).
42.
H. Pitsch, “A C++ computer program for 0-D combustion and 1-D laminar flame calculations,” RWTH Aachen, 1998.
43.
C. T. Bowman, R. K. Hanson, D. F. Davidson et al., Gri-mech 2.11, http://www.me.berkeley.edu/gri_mech/.
44.
G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. Hanson, S. Song, W. C. Gardiner, Jr., V. Lissianski, and Z. Qin, Gri-mech 3.0, http://www.me.berkeley.edu/gri_mech/.
45.
N. Peters, “Flame calculations with reduced mechanisms—an outline,” in Reduced Kinetic Mechanisms for Applications in Combustion Systems, edited by N. Peters and B. Rogg (Springer-Verlag, Berlin, 1993).
46.
S. C. Li and F. A. Williams (private communication, 1999).
47.
J. Warnatz, U. Maas, and R. W. Dibble, Combustion, Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation (Springer-Verlag, New York, 1996).
48.
H. Wang, A. Laskin, Z. M. Djurisic, C. K. Law, S. G. Davis, and D. Zhu, “A comprehensive mechanism of C2Hx and C3Hx fuel combustion,” presented at the Fall Technical Meeting of the Eastern States Section of the Combustion Institute, Raleigh, 1999.
49.
H. Pitsch, www.stanford.edu/  ̃hpitsch.
50.
J. E.
Rehm
and
N. T.
Clemens
, “
The relationship between vorticity/strain and reaction zone structure in turbulent non-premixed jet flames
,”
Proc. Combust. Inst.
27
,
1113
(
1998
).
This content is only available via PDF.
You do not currently have access to this content.