An application of a probability density function (PDF), or Lagrangian stochastic, approach to the case of high-Reynolds number wall-bounded turbulent flows is presented. The model simulates the instantaneous velocity and dissipation rate attached to a large number of particles and the wall-boundary conditions are formulated directly in terms of the particle properties. The present conditions aim at reproducing statistical results of the logarithmic region and are therefore in the spirit of wall functions. A new derivation of these boundary conditions and a discussion of the resulting behavior for different mean variables, such as the Reynolds stress components, is proposed. Thus, the present paper complements the work of Dreeben and Pope [Phys. Fluids 9, 2692 (1997)] who proposed similar wall-boundary particle conditions. Numerical implementation of these conditions in a standalone two-dimensional PDF code and a pressure-correction algorithm are detailed. Moments up to the fourth order are presented for a high-Reynolds number channel flow and are analyzed. This case helps to clarify how the method works in practice, to validate the boundary conditions and to assess the model and the code performance.

1.
S. B.
Pope
, “
PDF methods for turbulent reactive flows
,”
Prog. Energy Combust. Sci.
11
,
119
(
1985
).
2.
S. B.
Pope
, “
Lagrangian PDF methods for turbulent flows
,”
Annu. Rev. Fluid Mech.
26
,
23
(
1994
).
3.
J.-P. Minier, “Lagrangian stochastic modelling of turbulent flows,” Advances in Turbulence Modelling, 1997–1998 Lecture Series Programme (Von Karman Institute, Rhode-Saint-Genese, 1998).
4.
P. J.
Colluci
,
F. A.
Jaberi
,
P.
Givi
, and
S. B.
Pope
, “
The filtered density function for large-eddy simulation of turbulent reactive flows
,”
Phys. Fluids
10
,
499
(
1998
).
5.
R. O. Fox, “Computational Methods for Turbulent Reacting Flows in the Chemical Process Industry,” Revue de l’Institut Français du Pétrole, Vol. 51, No. 2, 1996.
6.
J.
Pozorski
and
J.-P.
Minier
, “
PDF modeling of dispersed two-phase turbulent flows
,”
Phys. Rev. E
59
,
855
(
1999
).
7.
J.-P. Minier and J. Pozorski, “Analysis of a PDF model in a mixing layer case,” 10th Symposium on Turbulent Shear Flows (The Pennsylvania State University, University Park, PA, 1995), p. 26.
8.
T. S.
Lundgren
, “
Distribution functions in the statistical theory of turbulence
,”
Phys. Fluids
10
,
969
(
1967
).
9.
T. D.
Dreeben
and
S. B.
Pope
, “
PDF and Reynolds-stress modelling of near-wall turbulent flows
,”
Phys. Fluids
9
,
154
(
1997
).
10.
T. D.
Dreeben
and
S. B.
Pope
, “
Probability density function/Monte Carlo simulation of near-wall turbulent flows
,”
J. Fluid Mech.
357
,
141
(
1998
).
11.
P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations (Springer-Verlag, Berlin, 1992).
12.
J. P. Minier and D. Talay (in preparation).
13.
M. S. Anand, S. B. Pope, and H. C. Mongia, “A PDF method for turbulent recirculating flows,” Turbulent Reactive Flows, Lecture Notes in Engineering (Springer-Verlag, 1989), pp. 672–693.
14.
T. D.
Dreeben
and
S. B.
Pope
, “
Wall-function treatment in PDF methods for turbulent flows
,”
Phys. Fluids
9
,
2692
(
1997
).
15.
G. Comte-Bellot, Ecoulement Turbulent Entre Deux Parois Paralleles (Publ. Scientifiques et Techniques du Ministère de l’Air, Paris, 1965).
16.
D. C.
Haworth
and
S. B.
Pope
, “
A generalized Langevin model for turbulent flows
,”
Phys. Fluids
29
,
387
(
1986
).
17.
S. B.
Pope
and
Y. L.
Chen
, “
The velocity-dissipation probability density function model for turbulent flows
,”
Phys. Fluids A
2
,
1437
(
1990
).
18.
S. B.
Pope
, “
Application of the velocity-dissipation probability density function model to inhomogeneous turbulent flows
,”
Phys. Fluids A
3
,
1947
(
1991
).
19.
L. Arnold, Stochastic Differential Equations: Theory and Applications (Wiley, New York, 1974).
20.
C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, corrected 2nd ed. (Springer-Verlag, Berlin, 1990).
21.
J. P.
Minier
and
J.
Pozorski
, “
Derivation of a PDF model for turbulent flows based on principles from statistical physics
,”
Phys. Fluids
9
,
1748
(
1997
).
22.
S. B.
Pope
, “
On the relationship between stochastic Lagrangian models of turbulence and second-moment closures
,”
Phys. Fluids
6
,
973
(
1994
).
23.
P. R.
Van Slooten
,
Jayesh
, and
S. B.
Pope
, “
Advances in PDF modeling for inhomogeneous turbulent flows
,”
Phys. Fluids
10
,
246
(
1998
).
24.
A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics (MIT Press, Cambridge, MA, 1971).
25.
F.
Durst
,
J.
Jovanovic
, and
J.
Sender
, “
LDA measurements in the near-wall region of a turbulent pipe flow
,”
J. Fluid Mech.
295
,
305
(
1995
).
26.
J. He and O. Simonin, “Numerical modelling of dilute gas-solid turbulent flows in vertical channel,” Electricité de France Report No. 95NB00009, Chatou, 1995.
27.
B.
Delarue
and
S. B.
Pope
, “
Application of PDF methods to compressible turbulent flows
,”
Phys. Fluids
9
,
2704
(
1997
).
28.
S. B.
Pope
, “
Particle method for turbulent flows: Integration of stochastic model equations
,”
J. Comput. Phys.
117
,
332
(
1995
).
29.
T.
Wei
and
W. W.
Willmarth
, “
Reynolds number effects on the structure of a turbulent channel flow
,”
J. Fluid Mech.
204
,
57
(
1989
).
30.
R. A.
Antonia
,
M.
Teitel
,
J.
Kim
, and
L. W. B.
Browne
, “
Low-Reynolds effects in a fully developed turbulent flow
,”
J. Fluid Mech.
236
,
579
(
1992
).
31.
J.
Kim
,
P.
Moin
, and
R.
Moser
, “
Turbulence statistics in fully developed channel flow at low Reynolds number
,”
J. Fluid Mech.
177
,
133
(
1987
).
This content is only available via PDF.
You do not currently have access to this content.