Probability density functions (PDFs) for steady-state Burgers turbulence supported by white-in-time random forcing at low wave numbers are studied by direct numerical simulation and compared to theoretical predictions. The velocity PDFs decay slightly faster than a Gaussian at large amplitudes. The putative power law exponent α of the PDF Q(ξ)∝|ξ|−α of velocity gradient ξ is examined at large Reynolds number and found to be approximately 3 or slightly greater. The tail of Q(ξ) behaves like |Rξ|−1exp(−c(|ξ|/Rξf)θ1) at large negative ξ, where ξf is a forcing parameter. The exponent θ1 is near unity, which is smaller than predicted by theory. It decreases slowly with the Reynolds number R up to R=14 000. The central parts of the PDFs of higher velocity space derivatives are found to be cusp-like, and the cusp exponents are measured. The PDF tails are stretched exponentials.

1.
T.
Gotoh
and
R. H.
Kraichnan
, “
Statistics of decaying Burgers turbulence
,”
Phys. Fluids A
5
,
445
(
1993
);
T.
Gotoh
, “
Inertial range statistics of Burgers turbulence
,”
Phys. Fluids
6
,
3985
(
1994
).
2.
T.
Gotoh
and
R. H.
Kraichnan
, “
Steady-state Burgers turbulence with large-scale forcing
,”
Phys. Fluids
10
,
2859
(
1998
).
3.
A.
Chekhlov
and
V.
Yakhot
, “
Kolmogorov turbulence in a random-force-driven Burgers equation
,”
Phys. Rev. E
51
,
2739
(
1995
);
A.
Chekhlov
and
V.
Yakhot
, “
Kolmogorov turbulence in a random-force-driven Burgers equation: anomalous scaling and probability density functions
,”
Phys. Rev. E
52
,
5681
(
1995
).
4.
M.
Avellaneda
,
R.
Ryan
, and
W.
E
, “
PDFs for velocity and velocity gradients in Burgers turbulence
,”
Phys. Fluids
7
,
3067
(
1995
).
5.
A. M.
Polyakov
, “
Turbulence without pressure
,”
Phys. Rev. E
52
,
6183
(
1995
).
6.
J.-P.
Bouchaud
,
M.
Mézard
, and
G.
Parisi
, “
Scaling and intermittency in Burgers turbulence
,”
Phys. Rev. E
52
,
3656
(
1995
).
7.
V.
Yakhot
and
A.
Chekhlov
, “
Algebraic tails of probability functions in the random-force-driven Burgers turbulence
,”
Phys. Rev. Lett.
77
,
3118
(
1996
).
8.
J.-P.
Bouchaud
and
M.
Mézard
, “
Velocity fluctuations in forced Burgers turbulence
,”
Phys. Rev. E
54
,
5116
(
1996
).
9.
G.
Falkovich
,
I.
Kolokolov
,
V.
Lebedev
, and
A.
Migdal
, “
Instantons and intermittency
,”
Phys. Rev. E
54
,
4896
(
1996
).
10.
E.
Balkovsky
,
G.
Falkovich
,
I.
Kolokolov
, and
V.
Lebedev
, “
Intermittancy of Burgers turbulence
,”
Phys. Rev. Lett.
78
,
1452
(
1997
).
11.
V.
Gurarie
and
A.
Midgal
, “
Instantons in the Burgers equation
,”
Phys. Rev. E
54
,
4908
(
1996
).
12.
W.
E
,
K.
Khanin
,
A.
Mazel
, and
Y.
Sinai
, “
Probability distribution functions for the random forced Burgers equation
,”
Phys. Rev. Lett.
78
,
1904
(
1997
).
13.
S. A.
Boldyrev
, “
Velocity-difference probability density functions for Burgers turbulence
,”
Phys. Rev. E
55
,
6907
(
1997
).
14.
S. N.
Gurbatov
,
S. I.
Simdyankin
,
E.
Aurell
,
U.
Frisch
, and
G.
Toth
, “
On the decay of Burgers turbulence
,”
J. Fluid Mech.
344
,
339
(
1997
).
15.
G.
Falkovich
and
V.
Lebedev
, “
Single-point velocity distribution in turbulence
,”
Phys. Rev. Lett.
24
,
4159
(
1997
).
16.
W. E and E. Vanden Eijnden, “Asymptotic theory for the probability density functions in Burgers turbulence,” Phys. Rev. Lett. (submitted).
17.
R. H. Kraichnan, “Note on forced Burgers turbulence,” Phys. Fluids (submitted).
18.
W. E and E. Vanden Eijnden, “Another note on forced Burgers turbulence,” Phys. Fluids (submitted).
19.
R. C.
Tausworthe
, “
Random numbers generated by linear recurrence modulo two
,”
Math. Comput.
19
,
201
(
1965
).
This content is only available via PDF.
You do not currently have access to this content.