Vortex formation and merging are investigated in the near field of a driven axisymmetric jet. Acoustic forcing is used to obtain repeatable vortex pairing events, and simultaneous passive scalar and cold-chemistry planar laser-induced flourescence are used to obtain instantaneous images of molecularly mixed jet fluid fraction. The time-varying scalar dissipation field and area-averaged stirredness of the vortex core region are measured at various stages of vortex interaction. These mixing properties are analyzed in conjunction with the observed vortex dynamics, such as the time-dependent vortex convection velocity. The results indicate that there are several phases of the pairing event with distinct mixing characteristics, including vortex roll-up, interaction, coalescence, and reentrainment. Vortex roll-up is nearly laminar with molecular diffusion between the layers of jet and co-flow fluid. The most dramatic change in the mixing state of the leading vortex, which includes the appearance of a uniformly mixed core region, occurs as the trailing vortex approaches and interferes with co-flow fluid entrainment. Vortex coalescence is marked by gross deformation and stretching of the trailing vortex, and rapid homogenization of the diffusion layers. Finally, re-entrainment of pure fluid after the pairing event results in an elongated, nonrotating structure. These stages of vortex pairing correspond to the temporal evolution of vorticity observed in previous studies.

1.
S. C.
Crow
and
F. H.
Champagne
, “
Orderly structure in jet turbulence
,”
J. Fluid Mech.
48
,
547
(
1971
).
2.
C. D.
Winant
and
F. K.
Browand
, “
Vortex pairing: The mechanism of turbulent mixing-layer growth at moderate Reynolds number
,”
J. Fluid Mech.
63
,
237
(
1974
).
3.
W. J. A.
Dahm
and
P. E.
Dimotakis
, “
Measurements of entrainment and mixing in turbulent jets
,”
AIAA J.
25
,
1216
(
1987
).
4.
M. M.
Koochesfahani
and
P. E.
Dimotakis
, “
Laser-Induced fluorescence measurements of mixed fluid concentration in a liquid plane shear layer
,”
AIAA J.
23
,
1700
(
1985
).
5.
P. S.
Karasso
and
M. G.
Mungal
, “
Scalar mixing and reaction in plane liquid shear layers
,”
J. Fluid Mech.
323
,
23
(
1997
).
6.
N. T.
Clemens
and
M. G.
Mungal
, “
Large-scale structure and entrainment in the supersonic mixing layer
,”
J. Fluid Mech.
284
,
171
(
1995
).
7.
G. F.
King
,
J. C.
Dutton
, and
R. P.
Lucht
, “
Instantaneous, quantitative measurements of molecular mixing in the axisymmetric jet near field
,”
Phys. Fluids
11
,
403
(
1999
).
8.
M.
Winter
,
J. K.
Lam
, and
M. B.
Long
, “
Techniques for high-speed digital imaging of gas concentrations in turbulent flows
,”
Exp. Fluids
5
,
177
(
1987
).
9.
A. R.
Ganji
and
R. F.
Sawyer
, “
Experimental study of the flowfield of a two-dimensional premixed turbulent flame
,”
AIAA J.
18
,
817
(
1980
).
10.
B. M.
Cetegen
and
N.
Mohamad
, “
Experiments on liquid mixing and reaction in a vortex
,”
J. Fluid Mech.
249
,
391
(
1993
).
11.
K. B.
Southerland
,
J. R.
Porter
III
,
W. J. A.
Dahm
, and
K. A.
Buch
, “
An experimental study of the molecular mixing process in an axisymmetric laminar vortex ring
,”
Phys. Fluids A
3
,
1385
(
1991
).
12.
J. E. Broadwell and M. G. Mungal, “Molecular mixing and chemical reactions in turbulent shear layers,” 22nd Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, 1988), p. 579.
13.
A. K. M. F.
Hussain
and
K. B. M. Q.
Zaman
, “
Vortex pairing in a circular jet under controlled excitation. 2. Coherent structure dynamics
,”
J. Fluid Mech.
101
,
493
(
1980
).
14.
F. R. Schauer, “Thermal diffusion and flame structure in a laminar hydrogen jet diffusion flame,” Ph.D. thesis, University of Illinois at Urbana–Champaign, 1998.
15.
F. F.
Grinstein
,
E. J.
Gutmark
,
T. P.
Parr
,
D. M.
Hanson-Parr
, and
U.
Obeysekare
, “
Streamwise and spanwise vortex interaction in an axisymmetric jet. A computational and experimental study
,”
Phys. Fluids
8
,
1515
(
1996
).
16.
L. S.
Huang
and
C. M.
Ho
, “
Small-scale transition in a plane mixing layer
,”
J. Fluid Mech.
210
,
475
(
1990
).
17.
S. L.
Wakelin
and
N.
Riley
, “
On the formation and propagation of vortex rings and pairs of rings
,”
J. Fluid Mech.
332
,
121
(
1997
).
18.
J. S.
Hewett
and
C. K.
Medina
, “
Flame-vortex interaction in a reacting vortex ring
,”
Phys. Fluids
10
,
189
(
1998
).
19.
M. M.
Rogers
and
R. D.
Moser
, “
Direct simulation of a self-similar turbulent mixing layer
,”
Phys. Fluids
6
,
903
(
1994
).
20.
K. B. M. Q.
Zaman
and
A. K. M. F.
Hussain
, “
Vortex pairing in a circular jet under controlled excitation. 1. General jet response
,”
J. Fluid Mech.
101
,
449
(
1980
).
21.
R. L.
Leboeuf
and
R. D.
Mehta
, “
Vortical structure morphology in the initial region of a forced mixing layer: Roll-up and pairing
,”
J. Fluid Mech.
315
,
175
(
1996
).
22.
P. H.
Paul
,
I.
van Cruyningen
,
R. K.
Hanson
, and
G.
Kychakoff
, “
High resolution digital flowfield imaging of jets
,”
Exp. Fluids
9
,
241
(
1990
).
23.
R. D. Hancock, “Laser diagnostic investigation of the structure of steady and driven hydrogen jet diffusion flames,” Ph.D. thesis, University of Illinois at Urbana–Champaign, 1996.
24.
O.
Inoue
, “
Double-frequency forcing on spatially growing mixing layers
,”
J. Fluid Mech.
234
,
553
(
1992
).
25.
R. A.
Petersen
and
R. C.
Clough
, “
The influence of higher harmonics on vortex pairing in an axisymmetric mixing layer
,”
J. Fluid Mech.
239
,
81
(
1992
).
26.
J. E.
Broadwell
and
R. E.
Breidenthal
, “
A simple model of mixing and chemical reaction in a turbulent shear layer
,”
J. Fluid Mech.
125
,
397
(
1982
).
27.
G. F. King, R. P. Lucht, and J. C. Dutton, “Instantaneous dual-tracer PLIF measurements of molecular mixing in axisymmetric jets,” AIAA Paper No. 97-0152, 35th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 1997.
28.
A. N.
Kolmogorov
, “
The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers
,”
Dokl. Akad. Nauk SSSR
30
,
301
(
1941
).
29.
A. N.
Kolmogorov
, “
Dissipation of energy in locally isotropic turbulence
,”
Dokl. Akad. Nauk SSSR
32
,
16
(
1941
).
30.
G. K. Batchelor, The Theory of Homogeneous Turbulence (Cambridge University Press, Cambridge, 1953).
31.
K. A.
Buch
and
W. J. A.
Dahm
, “
Experimental study of the fine-scale structure of conserved scalar mixing in turbulent shear flows. 1. Sc≫1,
J. Fluid Mech.
317
,
21
(
1996
).
32.
K. A.
Buch
and
W. J. A.
Dahm
, “
Experimental study of the fine-scale structure of conserved scalar mixing in turbulent shear flows. 2. Sc∼1,
J. Fluid Mech.
364
,
1
(
1998
).
33.
L. K. Su and N. T. Clemens, “The Structure of the Three-Dimensional Scalar Gradient in Gas-Phase Planar Turbulent Jets,” AIAA Paper No. 98-0429, 36th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 1998.
34.
D. R.
Dowling
and
P. E.
Dimotakis
, “
Similarity of the concentration field of gas-phase turbulent jets
,”
J. Fluid Mech.
218
,
109
(
1990
).
35.
R.
Verzicco
and
P.
Orlandi
, “
Mixedness in the formation of a vortex ring
,”
Phys. Fluids
7
,
1513
(
1995
).
36.
R. P. Lucht, “Applications of laser-induced fluorescence spectroscopy for combustion and plasma diagnostics,” in Laser Spectroscopy and its Applications, edited by L. J. Radzemski, R. W. Solarz, and J. Paisner (Marcel Dekker, New York, 1987).
37.
A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 1st ed. (Abacus Press, Cambridge, MA, 1988).
38.
P. E.
Dimotakis
,
R. C.
Miake-Lye
, and
D. A.
Papantoniou
, “
Structure and dynamics of round turbulent jets
,”
Phys. Fluids
26
,
3185
(
1983
).
39.
D.
Papantoniou
and
E. J.
List
, “
Large-scale structure in the far field of buoyant jets
,”
J. Fluid Mech.
209
,
151
(
1989
).
40.
W. J. A.
Dahm
and
P. E.
Dimotakis
, “
Mixing at large Schmidt number in the self-similar far field of turbulent jets
,”
J. Fluid Mech.
217
,
299
(
1990
).
41.
A.
Lozano
,
B.
Yip
, and
R. K.
Hanson
, “
Acetone: A tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence
,”
Exp. Fluids
13
,
369
(
1992
).
42.
B.
Yip
,
M. F.
Miller
,
A.
Lozano
, and
R. K.
Hanson
, “
A combined OH/acetone planar laser-induced fluorescence imaging technique for visualizing combusting flows
,”
Exp. Fluids
17
,
330
(
1994
).
43.
N. T.
Clemens
and
P. H.
Paul
, “
Effects of heat release on the near field flow structure of hydrogen jet diffusion flames
,”
Combust. Flame
102
,
271
(
1995
).
44.
M. F. Miller, T. C. Island, J. M. Seitzman, C. T. Bowman, M. G. Mungal, and R. K. Hanson, “An experimental investigation of supersonic reacting mixing layers,” AIAA Paper No. 94-0823, 32nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 1994.
45.
J. M. Seitzman, M. F. Miller, B. K. McMillin, R. K. Hanson, P. A. DeBarber, and C. F. Hess, “Multiple scalar planar fluorescence imaging for reacting flows,” AIAA Paper No. 94-0228, 32nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 1994.
46.
M. M.
Koochesfahani
,
P. E.
Dimotakis
, and
J. E.
Broadwell
, “
A ‘flip’ experiment in a chemically reacting turbulent mixing layer
,”
AIAA J.
23
,
1191
(
1985
).
47.
B.
Yip
,
A.
Lozano
, and
R. K.
Hanson
, “
Sensitized phosphorescence: a gas phase molecular mixing diagnostic
,”
Exp. Fluids
17
,
16
(
1994
).
48.
N. T.
Clemens
and
P. H.
Paul
, “
Scalar measurements in compressible axisymmetric mixing layers
,”
Phys. Fluids
7
,
1071
(
1995
).
49.
T. C. Island, W. D. Urban, and M. G. Mungal, “Quantitative scalar measurements in compressible mixing layers,” AIAA Paper No. 96-0685, 34th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 1996.
50.
G. F.
King
,
R. P.
Lucht
, and
J. C.
Dutton
, “
Quantitative dual-tracer planar laser-induced fluorescence measurements of molecular mixing
,”
Opt. Lett.
22
,
633
(
1997
).
51.
A. Lozano, “Laser-excited luminescent tracers for planar concentration measurements in gaseous jets,” Stanford University, HTGL Report No. T-284, 1992.
52.
P. H.
Paul
,
J. A.
Gray
,
J. L.
Durant
, and
J. W.
Thoman
, “
Collisional quenching corrections for laser-induced fluorescence measurements of NO A 2Σ+,
AIAA J.
32
,
1670
(
1994
).
53.
R. D. Hancock, F. R. Schauer, R. P. Lucht, V. R. Katta, and K. Y. Hsu, “Thermal diffusion effects and vortex-flame interactions in hydrogen jet diffusion flames,” 26th Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, 1996), p. 1087.
54.
C. M.
Ho
and
L. S.
Huang
, “
Subharmonics and vortex merging in mixing layers
,”
J. Fluid Mech.
119
,
443
(
1982
).
55.
P.
Flohr
and
J. C.
Vassilicos
, “
Accelerated scalar dissipation in a vortex
,”
J. Fluid Mech.
348
,
295
(
1997
).
56.
W. J. A. Dahm, L. K. Su, and K. M. Tacina, “Four-dimensional measurements of vector fields in turbulent flows,” AIAA Paper No. 96-1987, 27th AIAA Fluid Dynamics Conference, New Orleans, LA, 1996.
57.
K. A. Buch and W. J. A. Dahm, “Fine scale structure of conserved scalar mixing in turbulent flows: Sc≫1,Sc=1, and implications for reacting flows,” University of Michigan, Report No. 026779-5, 1991.
This content is only available via PDF.
You do not currently have access to this content.