Previously reported isothermal linear stability analyses of viscoelastic Taylor–Couette flow have predicted transitions to nonaxisymmetric and time-dependent secondary flows for elasticity numbers E≡De/Re>0.01. In contrast, recent experiments by Baumert and Muller using constant viscosity Boger fluids have shown that the primary flow transition leads to axisymmetric and stationary Taylor-type toroidal vortices. Moreover, experimentally observed onset Deborah number is an order of magnitude lower than that predicted by isothermal linear stability analyses. In this work, we explore the influence of energetics on the stability characteristics of the viscoelastic Taylor–Couette flow. Our analysis is based on a thermodynamically consistent reformulation of the Oldroyd-B constitutive model that takes into account the influence of thermal history on polymeric stress, and an energy equation that takes into account viscous dissipation effects. Our calculations reveal that for experimentally realizable values of Peclet and Brinkman numbers, the most dangerous eigenvalue is real, corresponding to a stationary and axisymmetric mode of instability. Moreover, the critical Deborah number associated with this eigenvalue is an order of magnitude lower than those associated with the nonisothermal extensions of the most dangerous eigenvalues of the isothermal flow. Eigenfunction analysis shows stratification of perturbation hoop stress across the gap width drives a radial secondary flow. The convection of base state temperature gradients by this radial velocity perturbation leads to this new mode of instability. The influence of geometric and kinematic parameters on this instability is also investigated.

1.
M.
Avgousti
and
A. N.
Beris
, “
Non-axisymmetric modes in the viscoelastic Taylor–Couette flow
,”
J. Non-Newtonian Fluid Mech.
50
,
225
(
1993a
).
2.
B. M.
Baumert
and
S. J.
Muller
, “
Flow visualization of the elastic Taylor–Couette instability in Boger fluids
,”
Rheol. Acta
34
,
147
(
1995
).
3.
B. M.
Baumert
and
S. J.
Muller
, “
Flow regimes in model viscoelastic fluid in a circular couette system with independently rotating cylinders
,”
Phys. Fluids
9
,
566
(
1997
).
4.
E. S. G.
Shaqfeh
, “
Purely elastic instabilities in viscometric flows
,”
Annu. Rev. Fluid Mech.
28
,
129
(
1996
).
5.
R. H.
Thomas
and
K.
Walters
, “
The stability of elastico-viscous flow between rotating cylinders. Part 1.
,”
J. Fluid Mech.
18
,
33
(
1964a
).
6.
R. H.
Thomas
and
K.
Walters
, “
The stability of elastico-viscous flow between rotating cylinders. Part 2.
,”
J. Fluid Mech.
19
,
557
(
1964b
).
7.
D. W.
Beard
,
M. H.
Davies
, and
K.
Walters
, “
The stability of elastico-viscous flow between rotating cylinders. Part 3. overstability in viscous and Maxwell fluid
,”
J. Fluid Mech.
24
,
321
(
1966
).
8.
B. J.
Zielinska
and
Y.
Demay
, “
Couette–Taylor instability in viscoelastic fluids
,”
Phys. Rev. A
38
,
897
(
1988
).
9.
S. J.
Muller
,
R. G.
Larson
, and
E. S. G.
Shaqfeh
, “
A purely elastic transition in Taylor–Couette flow
,”
Rheol. Acta
28
,
499
(
1989
).
10.
S. J.
Muller
,
E. S. G.
Shaqfeh
, and
R. G.
Larson
, “
Experimental studies of the onset of oscillatory instability in viscoelastic Taylor–Couette flow
,”
J. Non-Newtonian Fluid Mech.
46
,
315
(
1993
).
11.
R. G.
Larson
,
E. S. G.
Shaqfeh
, and
S. J.
Muller
, “
A purely elastic instability in Taylor–Couette flow
,”
J. Fluid Mech.
218
,
573
(
1990
).
12.
E. S. G.
Shaqfeh
,
S. J.
Muller
, and
R. G.
Larson
, “
The effects of gap width and dilute solution properties in viscoelastic Taylor–Couette instability
,”
J. Fluid Mech.
235
,
285
(
1992
).
13.
Y. L.
Joo
and
E. S. G.
Shaqfeh
, “
Observations of purely elastic instabilities in the Taylor–Dean flow of a Boger fluid
,”
J. Fluid Mech.
262
,
27
(
1994
).
14.
M.
Avgousti
and
A. N.
Beris
, “
Vicoelastic Taylor–Couette flow: Bifurcation analysis in the presence of symmetries
,”
Proc. R. Soc. London, Ser. A
443
,
17
(
1993b
).
15.
R.
Sureshkumar
,
A. N.
Beris
, and
M.
Avgousti
, “
Non-axisymmmmetric subcritical bifurcation in viscoelastic Taylor–Couette flow
,”
Proc. R. Soc. London, Ser. A
447
,
135
(
1994
).
16.
M.
Renardy
,
Y.
Renardy
,
R.
Sureshkumar
, and
A. N.
Beris
, “
Hopf-Hopf and steady Hopf mode interactions in Taylor–Couette flow of an upper convected Maxwell liquid
,”
J. Non-Newtonian Fluid Mech.
63
,
1
(
1996
).
17.
J. J.
Magda
and
R. G.
Larson
, “
A transition occuring in ideal elastic liquids during shear flow
,”
J. Non-Newtonian Fluid Mech.
30
,
1
(
1988
).
18.
G. H.
McKinley
,
J. A.
Byars
,
R. A.
Brown
, and
R. C.
Armstrong
, “
Observations on the elastic instability in cone-and-plate and parallel-plate flows of a polyisobutylene Boger fluid
,”
J. Non-Newtonian Fluid Mech.
40
,
201
(
1991
).
19.
A.
Oztekin
and
R. A.
Brown
, “
Instability of a viscoelastic fluid between rotating parallel disks: Analysis for the Oldroyd-B fluid
,”
J. Fluid Mech.
255
,
473
(
1993
).
20.
J. A.
Byars
,
A.
Oztekin
,
R. A.
Brown
, and
G. H.
McKinley
, “
Spiral instabilities in the flow of highly elastic fluids between rotating parallel disks
,”
J. Fluid Mech.
271
,
173
(
1994
).
21.
A.
Oztekin
,
R. A.
Brown
, and
G. H.
McKinley
, “
Quantitative prediction of the viscoelastic instability in cone-and-plate flow of a Boger fluid using a multi-mode Giesekus model
,”
J. Non-Newtonian Fluid Mech.
54
,
351
(
1994
).
22.
G. H.
McKinley
,
A.
Oztekin
,
J. A.
Byars
, and
R. A.
Brown
, “
Self-similar spiral instability in the elastic flows between a cone and a plate
,”
J. Fluid Mech.
285
,
123
(
1995
).
23.
P. J.
Northey
,
R. C.
Armstrong
, and
R. A.
Brown
, “
Finite-amplitude time-periodic states in viscoelastic Taylor–Couette flow described by the UCM model
,”
J. Non-Newtonian Fluid Mech.
42
,
117
(
1992
).
24.
P. Chossat and G. Iooss, The Couette–Taylor Problem (Springer-Verlag, New York, 1994).
25.
M.
Golubitsky
and
W. F.
Langford
, “
Pattern formation and bistability in flow between counterrotating cylinders
,”
Physica (Amsterdam)
32
,
362
(
1988
).
26.
M. D.
Graham
, “
Effect of axial flow on viscoelastic Taylor–Couette instability
,”
J. Fluid Mech.
360
,
341
(
1998
).
27.
A.
Groisman
and
V.
Steinberg
, “
Couette–Taylor flow in a dilute polymer solution
,”
Phys. Rev. Lett.
77
,
1480
(
1996
).
28.
A.
Groisman
and
V.
Steinberg
, “
Mechanism of elastic instability in Couette flow of polymer solutions: Experiment
,”
Phys. Fluids
10
,
2451
(
1998
).
29.
L. M.
Quinzani
,
G. H.
McKinley
,
R. A.
Brown
, and
R. C.
Armstrong
, “
Modelling the rheology of polyisobutylene solutions
,”
J. Rheol.
34
,
705
(
1990
).
30.
U. A. Al-Mubaiyedh, R. Sureshkumar, and B. Khomami, “Stability of viscoelastic Taylor–Couette flow: Influence of relaxation spectrum and energetics,” Presented at the 70th Annual Meeting of the Society of Rheology, Monterey, CA., 1998.
31.
A.
Chowda
and
M.
Avgousti
, “
Stability of viscoelastic flows between eccentric rotating cylinders
,”
J. Non-Newtonian Fluid Mech.
63
,
97
(
1996
).
32.
S. J. Muller, personal communication.
33.
R. Sureshkumar and M. Avgousti, “Stability analysis of the eccentric Dean flow of an upper convected Maxwell fluid,” presented at the 70th Annual Meeting of the Society of Rheology, Monterey, CA., 1998.
34.
M. T. Arigo, L. E. Becker, and G. H. McKinley, “Viscous heating and non-isothermal hydrodynamics in polymer solutions,” presented at the 70th Annual Meeting of the Society of Rheology, Monterey, CA., 1998.
35.
M. J.
Crochet
and
P. M.
Naghdi
, “
A class of simple solids with fading memory
,”
Int. J. Eng. Sci.
7
,
1173
(
1969
).
36.
J. D. Ferry, Viscoelastic Properties of Polymers (Wiley, New York, 1980).
37.
R. B.
Bird
and
J. M.
Wiest
, “
Constitutive equations for polymeric liquids
,”
Annu. Rev. Fluid Mech.
27
,
169
(
1995
).
38.
G. I.
Taylor
, “
Stability of a viscous liquid contained between two rotating cylinders
,”
Philos. Trans. R. Soc. London, Ser. A
223
,
289
(
1923
).
39.
S. Chandrasekhar, Hydrodynamic and Hydromagnatic Stability (Clarendon, Oxford, 1961).
40.
C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid Dynamics (Springer-Verlag, New York, 1988), Chaps. 3 and 5.
41.
R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena (Wiley, New York, 1960).
This content is only available via PDF.
You do not currently have access to this content.