We investigate the axial instability of the free-surface front of a viscous fluid in a horizontal cylinder rotating about its longitudinal axis. A simplified model equation for the evolution of the free surface is derived and includes the effects of gravity, capillarity, inertia, and viscosity. This equation is solved numerically to determine the base state with no axial variation, and a numerical linear stability analysis is carried out to examine the onset of unstable axial modes. Various computational results are presented for the wavelength of the axial instability. Inertia is found to play an important role in the onset of the instability and the wavelength of the instability λ satisfies the power law λ∼γ1/3, where γ is surface tension. Finally some numerical simulations of the simplified evolution equation are presented to show that they can capture the steady shark-teeth patterns observed in recent experiments [R. E. Johnson, in Engineering Science, Fluid Dynamics: A Symposium to Honor T. Y. Wu (World Scientific, Singapore, 1990), pp. 435–449; S. T. Thoroddsen and L. Mahadevan, “Experimental studies of the instabilities in a partially filled horizontal rotating cylinder,” Exp. Fluids 23, 1 (1997)].

1.
H.
Benkreira
,
R.
Patel
,
M. F.
Edwards
, and
W. L.
Wilkinson
, “
Classification and analysis of coating flows
,”
J. Non-Newtonian Fluid Mech.
54
,
437
(
1994
).
2.
K. J.
Ruschak
and
L. E.
Scriven
, “
Rimming flow of a liquid in a rotating horizontal cylinder
,”
J. Fluid Mech.
76
,
113
(
1976
).
3.
F. M.
Orr
and
L. E.
Scriven
, “
Rimming flow: Numerical simulation of steady, viscous, free-surface flow with surface tension
,”
J. Fluid Mech.
84
,
145
(
1978
).
4.
K. J.
Ruschak
, “
Coating flows
,”
Annu. Rev. Fluid Mech.
17
,
65
(
1985
).
5.
R. E. Johnson, in Engineering Science, Fluid Dynamics: A Symposium to Honor T. Y. Wu (World Scientific, Singapore, 1990), pp. 435–449.
6.
S. T.
Thoroddsen
and
L.
Mahadevan
, “
Experimental studies of the instabilities in a partially filled horizontal rotating cylinder
,”
Exp. Fluids
23
,
1
(
1997
).
7.
F.
Melo
, “
Localized states in a film-dragging experiment
,”
Phys. Rev. E
48
,
2704
(
1993
).
8.
T. B. Benjamin, W. G. Pritchard, and S. J. Tavener, “Steady and unsteady flows of a highly viscous liquid inside a rotating horizontal cylinder” (preprint, 1993).
9.
D.
Vallette
,
G.
Jacobs
, and
J.
Gollub
, “
Oscillations and spatiotemporal chaos of one-dimensional fluid fronts
,”
Phys. Rev. E
55
,
4274
(
1997
).
10.
H. E.
Huppert
, “
Flow and instability of a viscous current down a slope
,”
Nature (London)
300
,
427
(
1982
).
11.
S. M.
Troian
,
E.
Herbolzheimer
,
S. A.
Safran
, and
J. F.
Joanny
, “
Fingering instabilities of driven spreading films
,”
Europhys. Lett.
10
,
25
(
1989
).
12.
M.
Rabaud
,
Y.
Couder
, and
S.
Michalland
, “
Wavelength selection and transients in the one-dimensional array of cells of the printer instability
,”
Eur. J. Mech. B/Fluids
10
,
253
(
1991
).
13.
H. K.
Moffatt
, “
Behavior of a viscous film on the outer surface of a rotating cylinder
,”
J. Mec.
16
,
651
(
1977
).
14.
R. E.
Johnson
, “
Steady-state coating flows inside a rotating horizontal cylinder
,”
J. Franklin Inst.
190
,
321
(
1988
).
15.
H. Ockendon and J. Ockendon, Viscous Flow (Cambridge University Press, Cambridge, 1995).
16.
L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd ed. (Pergamon, New York, 1987).
17.
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields (Springer, New York, 1983).
18.
Lord Rayleigh, The Theory of Sound, 2nd ed. (Dover, New York, 1945).
19.
T. E. Faber, Fluid Dynamics for Physicists (Cambridge University Press, Cambridge, 1997).
20.
M. A.
Spaid
and
G. M.
Homsy
, “
Stability of Newtonian and viscoelastic dynamic contact lines
,”
Phys. Fluids
8
,
460
(
1996
).
21.
J.-T.
Jeong
and
H. K.
Moffatt
, “
Free-surface cusps associated with flow at low Reynolds number
,”
J. Fluid Mech.
241
,
1
(
1992
).
22.
C.
Ellegard
,
A.
Hanse
,
T.
Bohr
, and
S.
Watanabe
, “
Corners in kitchen sink flows
,”
Nature (London)
392
,
797
(
1998
).
23.
H. Schlichting, Boundary Layer Theory (Pergamon, New York, 1955).
This content is only available via PDF.
You do not currently have access to this content.