The transition from two-dimensional thermoconvective steady flow to a time-dependent flow is considered for a liquid with a high Prandtl number (Pr=105) in a liquid bridge with a curved free surface. Both thermocapillary and buoyancy mechanisms of convection are taken into account. The computer program developed for this simulation transforms the original nonrectangular physical domain into a rectangular computational domain. To solve the problem in body-fitted curvilinear coordinates, the time-dependent Navier–Stokes equations were approximated by central differences on a stretched mesh. For liquid bridges with a flat interface, the instability corresponding to an azimuthal wave number of m=0 is not found for the investigated range of Marangoni numbers. The instability corresponding to an m=0 is found for relatively low Marangoni numbers only in liquid bridges with a nonflat, free surface, and nonzero Rayleigh number. The steady state becomes unstable to axially running waves. It is shown that the onset of instability depends strongly upon the volume of the liquid. The stability boundary is reported for the aspect ratio Γ=height/radius=4/3 and for a wide range of liquid bridge volumes. The physical mechanism of the oscillations is based on the temporal interaction of the temperature sensitive free surface with the small local disturbances, created by temperature distribution inside the liquid bridge.

1.
J.-J.
Xu
and
S. H.
Davis
, “
Convective thermocapillary instability in liquid bridges
,”
Phys. Fluids
27
,
1102
(
1984
).
2.
R.
Rupp
,
G.
Muller
, and
G.
Neumann
, “
Three-dimensional time dependent modeling of the Marangoni convection in zone melting configurations for GaAs
,”
J. Cryst. Growth
97
,
34
(
1989
).
3.
G. P.
Neitzel
,
K.-T.
Chang
,
D. F.
Jankovskii
, and
H. D.
Mittelmann
, “
Linear-stability theory of thermocapillary convection in a model of the float-zone crystal-growth process
,”
Phys. Fluids A
5
,
108
(
1993
).
4.
H. C.
Kuhlmann
, “
Thermocapillary flows in finite size systems
,”
Math. Comput. Modeling
20
,
145
(
1994
).
5.
H. D.
Mittelmann
, “
Hydrodynamic stability of thermocapillary convection in liquid bridges
,”
Math. Comput. Modeling
20
,
175
(
1994
).
6.
F.
Preisser
,
D.
Schwabe
, and
A.
Scharmann
, “
Steady and oscillatory thermocapillary convection in liquid columns with free cylindrical surface
,”
J. Fluid Mech.
126
,
545
(
1983
).
7.
R.
Velten
,
D.
Schwabe
, and
A.
Scharmann
, “
The periodic instability of thermocapillary convection in cylindrical liquid bridges
,”
Phys. Fluids A
3
,
267
(
1991
).
8.
Ch.-H. Chun and J. Seikmann, “Higher modes and their instabilities of the oscillating Marangoni convection in a large cylindrical column,” Scientific Results of the German Spacelab Mission D-2, 235 (1995).
9.
L.
Carotenuto
,
C.
Albanese
,
D.
Castagnolo
, and
R.
Monti
, “
Onset of oscillatory Marangoni convection in a liquid bridge
,”
Lect. Notes Phys.
464
,
331
(
1995
).
10.
M.
Wanschura
,
V. M.
Shevtsova
,
H. C.
Kuhlmann
, and
H. J.
Rath
, “
Convective instability mechanism in thermocapillary liquid bridges
,”
Phys. Fluids
5
,
912
(
1995
).
11.
M.
Levenstamm
and
G.
Amberg
, “
Hydrodynamical instabilities of thermocapillary flow in half-zone
,”
J. Fluid Mech.
297
,
357
(
1995
).
12.
V. M. Shevtsova, M. Wanschura, H. C. Kuhlmann, J. Z. Shu, and J. C. Legros, “Thermocapillary motion and stability of liquid bridges,” 2-d European Symposium Fluids in Space, Naples, 1996, edited by A. Viviani (Edizioni, Naples, 1996), p. 255.
13.
R.
Savino
and
R.
Monti
, “
Oscillatory convection in a cylindrical liquid bridges
,”
Phys. Fluids
8
,
2906
(
1996
).
14.
M.
Wanschura
,
H. C.
Kuhlmann
, and
H. J.
Rath
, “
Three-dimensional instability of axisymmetric buoyant convection in cylinders heated from below
,”
J. Fluid Mech.
326
,
399
(
1996
).
15.
Zh.
Kozhoukharova
and
S.
Slavchev
, “
Computer simulation of the thermocapillary convection in a non-cylindrical floating zone
,”
J. Cryst. Growth
74
,
236
(
1986
).
16.
J.
Li
,
J.
Sun
, and
Z.
Zaghir
, “
Buoyant and thermocapillary flow in liquid encapsulated floating zones
,”
J. Cryst. Growth
131
,
83
(
1993
).
17.
Y.
Tao
,
R.
Sakidja
, and
S.
Kou
, “
Computer simulation and flow visualization of thermocapillary flow in a silicone oil floating zone
,”
Int. J. Heat Mass Transf.
38
,
503
(
1995
).
18.
V. M.
Shevtsova
,
H. C.
Kuhlmann
, and
H. J.
Rath
, “
Thermocapillary convection in liquid bridges with a deformed free surface
,”
Lect. Notes Phys.
464
,
321
(
1995
).
19.
H.
Tang
,
Z. M.
Tang
,
W. R.
Hu
,
G.
Chen
, and
B.
Roux
, “
Numerical simulation of g-jitter effects on half floating zone convection under microgravity condition
,”
Microgravity Sci. Technol.
9
,
28
(
1996
).
20.
W. R.
Hu
,
J. Z.
Shu
,
R.
Zhou
, and
Z. M.
Tang
, “
Influence of liquid bridge volume on the onset of oscillation in floating zone convection. I. Experiments
,”
J. Cryst. Growth
142
,
385
(
1994
).
21.
Z. H.
Cao
,
J. C.
Xie
,
Z. M.
Tang
, and
W. R.
Wen
, “
Experimental study on oscillatory thermocapillary convection
,”
Sci. China A
35
,
1101
(
1992
).
22.
A.
Hirata
,
M.
Sakurai
,
N.
Ohishi
,
M.
Koyma
,
T.
Morita
, and
H.
Kawasaki
, “
Transition process from laminar to oscillatory Marangoni convection in a liquid bridge under normal and microgravity
,”
J. Jpn. Soc. Microgravity Appl.
14
,
137
(
1997
).
23.
M.
Sakurai
,
N.
Ohishi
, and
A.
Hirata
, “
Effect of gravity on Marangoni convection in a liquid bridge
,”
J. Jpn. Soc. Microgravity Appl.
14
,
130
(
1997
).
24.
L. Carotenuto, “Onset of oscillatory Marangoni flow in liquid bridges,” Ph.D. thesis, University of Naples, 1994.
25.
A. A. Samarskii, Introduction in to Numerical Methods (in Russian) (Moscow, Nauka, 1983).
26.
Y. Shen, “Energy stability of thermocapillary convection in a model of float-zone crystal growth,” Ph.D. thesis, Arizona State University, 1989.
27.
G. R.
Hardin
and
R. L.
Sani
, “
Buoyancy driven instability in a vertical cylinder: Binary fluids with Soret effect
,”
Int. J. Numer. Methods Fluids
17
,
755
(
1993
).
28.
A.
Zebib
,
G. M.
Homsy
, and
E.
Meiburg
, “
High Marangoni number convection in a square cavity
,”
Phys. Fluids
28
,
3467
(
1985
).
29.
H. C. Kuhlmann, M. Wanschura, J. Leypoldt, and H. J. Rath, “Buoyant-thermocapillary convection and three-dimensional flow in liquid bridges: Comparison of numerical and experimental results,” Proceedings of International Workshop on short-term experiments under strongly reduced gravity conditions, Bremen, Germany, 1996, edited by H. J. Rath, p. 2.2–2.8.
30.
G. P.
Neitzel
,
K.-T.
Chang
,
D. F.
Jankowski
, and
H. D.
Mittelmann
, “
Linear-stability theory of thermocapillary convection in a model of the float-zone crystal-growth process
,”
Phys. Fluids A
5
,
108
(
1993
).
31.
L. J.
Peltier
and
S.
Biringen
, “
Time-dependent thermocapillary convection in a rectangular cavity: numerical results for the moderate Prandtl number fluid
,”
J. Fluid Mech.
257
,
339
(
1993
).
32.
I. Martinez, J. M. Haynes, and D. Langbein, “Fluid statics and capillarity,” in Fluid Sciences and Materials Science in Space, ESA, edited by H. U. Walter (Springer, New York, 1987), Chap. II.
33.
A.
Mahalov
and
S.
Leibovich
, “
On the calculation of coupling coefficients in amplitude equations
,”
J. Comput. Phys.
101
,
441
(
1992
).
34.
R. Monti, R. Savino, and M. Lappa, “Oscillatory thermocapillary flows in simulated floating-zones with time-dependent temperature boundary conditions,” IAF-96-J.4.01.
This content is only available via PDF.
You do not currently have access to this content.