The dynamics of inviscid, steady, two dimensional flows is examined for the case of a hyperbolic sine functional relation between the vorticity and the stream function. The 2-soliton solution of the sinh-Poisson equation with complex wavenumbers will reproduce the Mallier-Maslowe pattern, a row of counter-rotating vortices. A special 4-soliton solution is derived and the corresponding flow configuration is studied. By choosing special wavenumbers complex flows bounded by two rigid walls can result. A conjecture regarding the number of recirculation regions and the wavenumber of the soliton expansion is offered. The validity of the new solution is verified independently by direct differentiation with a computer algebra software. The circulation and the vorticity of these novel flow patterns are finite and are expressed in terms of well defined integrals. The questions of the linear stability and the nonlinear evolution of a finite amplitude disturbance of these steady vortices are left for future studies.

1.
G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 1967).
2.
P. G. Saffman, Vortex Dynamics (Cambridge University Press, Cambridge, 1992).
3.
G. R.
Flierl
, “
Isolated eddy models in geophysics
,”
Annu. Rev. Fluid Mech.
19
,
493
(
1987
).
4.
E. J.
Hopfinger
and
G. J. G.
Van Heijst
, “
Vortices in rotating fluids
,”
Annu. Rev. Fluid Mech.
25
,
241
(
1993
).
5.
D.
Marteau
,
O.
Cardoso
, and
P.
Tabeling
, “
Equilibrium states of two-dimensional turbulence: An experimental study
,”
Phys. Rev. E
51
,
5124
(
1995
).
6.
D. G.
Dritschel
, “
The stability of elliptical vortices in an external straining flow
,”
J. Fluid Mech.
210
,
223
(
1990
).
7.
M. R.
Dhanak
and
M. P.
Marshall
, “
Motion of an elliptical vortex under applied periodic strain
,”
Phys. Fluids A
5
,
1224
(
1993
).
8.
L. M.
Polvani
and
J.
Wisdom
, “
Chaotic Lagrangian trajectories around an elliptical vortex patch embedded in a constant and uniform background shear flow
,”
Phys. Fluids
2
,
123
(
1990
).
9.
V. V.
Meleshko
and
G. J. F.
Van Heijst
, “
On Chaplygin’s investigations of two-dimensional vortex structures in an inviscid fluid
,”
J. Fluid Mech.
272
,
157
(
1994
).
10.
J. T.
Stuart
, “
On finite amplitude oscillations in laminar mixing layer
,”
J. Fluid Mech.
29
,
417
(
1967
).
11.
R.
Mallier
and
S. A.
Maslowe
, “
A row of counter rotating vortices
,”
Phys. Fluids
5
,
1074
(
1994
).
12.
R. A.
Pastmanter
, “
On long lived vortices in 2-D viscous flows, most probable states of inviscid 2-D flows and a soliton equation
,”
Phys. Fluids
6
,
1236
(
1994
).
13.
T.
Dauxois
,
S.
Fauve
, and
L.
Tuckerman
, “
Stability of periodic arrays of vortices
,”
Phys. Fluids
8
,
487
(
1996
).
14.
J. S.
Hesthaven
,
J. P.
Lynov
,
A. H.
Nielsen
,
J.
Juul Rasmussen
,
M. R.
Schmidt
,
E. G.
Shapiro
, and
S. K.
Turitsyn
, “
Dynamics of a nonlinear dipole vortex
,”
Phys. Fluids
7
,
2220
(
1995
).
15.
M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform (SIAM, Philadelphia, 1981).
16.
G.
Forrest
and
D. W.
McLaughlin
, “
Spectral theory of the periodic sine-Gordon equation
,”
J. Math. Phys.
23
,
1248
(
1982
).
17.
N.
Martinov
and
N.
Vitanov
, “
New class of running wave sulutions of the (2+1) dimensional sine-Gordon equation
,”
J. Phys. A
27
,
4611
(
1994
).
18.
A. C.
Ting
,
H. H.
Chen
, and
Y. C.
Lee
, “
Exact solutions of a nonlinear boundary value problem: the vortices of the two dimensional sinh-Poisson equation
,”
Physica D
26
,
36
(
1987
).
19.
K. W.
Chow
,
N. W. M.
Ko
, and
S. K.
Tang
, “
Solitons in (2+0) dimensions and their applications in vortex dynamics
,”
Fluid Dyn. Res.
21
,
101
(
1997
).
20.
D.
Montgomery
and
G.
Joyce
, “
Statistical mechanics of negative temperature states
,”
Phys. Fluids
17
,
1139
(
1974
).
21.
L. F.
Rossi
,
J. F.
Lingevitch
, and
A. J.
Bernoff
, “
Quasi-steady monopole and tripole attractors for relaxing vortices
,”
Phys. Fluids
9
,
2329
(
1997
).
22.
Y. G.
Morel
and
X. J.
Carton
, “
Multipolar vortices in two dimensional incompressible flows
,”
J. Fluid Mech.
267
,
23
(
1994
).
23.
J.
Sommeria
,
C.
Staquet
, and
R.
Robert
, “
Final equilibrium state of a two dimensional shear layer
,”
J. Fluid Mech.
233
,
661
(
1991
).
24.
D.
Montgomery
,
W. H.
Matthaeus
,
W. T.
Stribling
,
D.
Martinez
, and
S.
Oughton
, “
Relaxation in two dimensions and the sinh Poisson equation
,”
Phys. Fluids
4
,
3
(
1992
).
25.
L.
Bergström
and
P. H.
Alfredsson
, “
Symmetry properties of developing three dimensional laminar disturbances in plane Poiseuille flow
,”
Phys. Fluids
6
,
1618
(
1994
).
This content is only available via PDF.
You do not currently have access to this content.