A particle method applying the probability density function (PDF) approach to turbulent compressible reacting flows is presented. The method is applied to low and high Mach number reacting plane mixing layers. Good agreement is obtained between the model calculations and the available experimental data. The PDF equation is solved using a Lagrangian Monte Carlo method. To represent the effects of compressibility on the flow, the velocity PDF formulation is extended to include thermodynamic variables such as the pressure and the internal energy. Full closure of the joint PDF transport equation is made possible in this way without coupling to a finite-difference-type solver. The stochastic differential equations (SDE) that model the evolution of Lagrangian particle properties are based on existing models for the effects of compressibility on turbulence. The chemistry studied is the fast hydrogen–fluorine reaction. For the low Mach number runs, low heat release calculations are performed with equivalence ratios different from one. Heat release is then increased to study the effect of chemical reaction on the mixing layer growth rate. The subsonic results are compared with experimental data, and good overall agreement is obtained. The calculations are then performed at a higher Mach number, and the results are compared with the subsonic results. Our purpose in this paper is not to assess the performances of existing models for compressible or reacting flows. It is rather to present a new approach extending the domain of applicability of PDF methods to high-speed combustion.

1.
S. K.
Lele
, “
Compressibility effects on turbulence
,”
Annu. Rev. Fluid Mech.
26
,
211
(
1994
).
2.
N. T.
Clemens
and
M. G.
Mungal
, “
Large-scale structure and entrainment in the supersonic mixing layer
,”
J. Fluid Mech.
284
,
171
(
1995
).
3.
D.
Papamoschou
and
A.
Roshko
, “
The compressible turbulent shear layer: An experimental study
,”
J. Fluid Mech.
197
,
453
(
1988
).
4.
M.
Samimy
and
G. S.
Elliott
, “
Effects of compressibility on the characteristics of free shear layers
,”
AIAA J.
28
,
439
(
1990
).
5.
M.
Samimy
,
M. F.
Reeder
, and
G. S.
Elliott
, “
Compressibility effects on large structures in free shear flows
,”
Phys. Fluids. A
4
,
1251
(
1992
).
6.
D.
Papamoschou
, “
Structure of the compressible turbulent shear layer
,”
AIAA J.
29
,
680
(
1990
).
7.
G. S.
Elliott
and
S.
Samimy
, “
Compressibility effects in free shear layers
,”
Phys. Fluids A
2
,
1231
(
1990
).
8.
S. G.
Goebel
and
J. C.
Dutton
, “
Experimental study of compressible turbulent mixing layers
,”
AIAA J.
29
,
538
(
1990
).
9.
S. G.
Goebel
,
J. C.
Dutton
,
H.
Krier
, and
J. P.
Renie
, “
Mean and turbulent velocity measurements of supersonic mixing layers
,”
Exp. Fluids
8
,
263
(
1990
).
10.
S.
Sarkar
,
G.
Erlebacher
,
M. Y.
Hussaini
, and
H. O.
Kreiss
, “
The analysis and modelling of dilatational terms in compressible turbulence
,”
J. Fluid Mech.
227
,
473
(
1991
).
11.
S.
Sarkar
, “
The pressure-dilatation correlation in compressible flows
,”
Phys. Fluids
4
,
2674
(
1992
).
12.
S.
Sarkar
,
G.
Erlebacher
, and
M. Y.
Hussaini
, “
Direct simulation of compressible turbulence in a shear flow
,”
Theor. Comput. Fluid Dyn.
2
,
291
(
1991
).
13.
O.
Zeman
, “
Dilatation dissipation: The concept and application in modeling compressible mixing layers
,”
Phys. Fluids A
2
,
178
(
1990
).
14.
O.
Zeman
, “
On the decay of compressible isotropic turbulence
,”
Phys. Fluids. A
3
,
951
(
1991
).
15.
O. Zeman and G. Coleman, “Compressible turbulence subjected to shear and rapid compression,” in Turbulent Shear Flows 8 (Springer-Verlag, Berlin, 1993), p. 283.
16.
R. Abid, “On prediction of equilibrium states in homogeneous compressible turbulence,” Technical report, NASA Contractor Report No. 4570, 1994.
17.
S.
Sarkar
, “
The stabilizing effect of compressibility in turbulent shear flow
,”
J. Fluid Mech.
282
,
163
(
1995
).
18.
P. A. Libby and F. A. Williams, in Turbulent Reacting Flows (Springer-Verlag, Berlin, 1980).
19.
P. A. Libby, in Turbulent Reacting Flows (Springer-Verlag, Berlin, 1994).
20.
P. E. Dimotakis, “Turbulent free shear layer mixing and combustion,” in High-Speed Flight Propulsion Systems, edited by S. N. B. Murthy and E. T. Curran (AIAA, Washington, D.C., 1991), pp. 265–340.
21.
S. B.
Pope
, “
Pdf methods for turbulent reactive flows
Prog. Energy Combust. Sci.
11
,
119
(
1985
).
22.
K. N. C. Bray, P. A. Libby, and F. A. Williams, “High speed turbulent combustion,” Turbulent Reacting Flows, edited by P. A. Libby (Academic Press, New York, 1994).
23.
S. M. Correa and S. B. Pope, “Comparison of a Monte Carlo pdf/finite-volume mean flow model with bluff-body raman data, in the 24th International Symposium on Combustion (The Combustion Institute, 1992) p. 279.
24.
G. C. Chang, “A Monte Carlo PDF/All-speed finite-volume study of turbulent flames,” Ph.D. thesis, Cornell University, 1995.
25.
S. B.
Pope
and
Y. L.
Chen
, “
The velocity-dissipation probability density function model for turbulent flows
,”
Phys. Fluids
2
,
1437
(
1990
).
26.
S. B.
Pope
, “
Application of the velocity-dissipation probability density function model to inhomogeneous turbulent flows
,”
Phys Fluids
3
,
1947
(
1991
).
27.
S. B. Pope, “Position, velocity and pressure correction algorithm for particle method solution of the pdf transport equations,” Technical Report NO. FDA 95-06, Cornell University, 1995.
28.
A. T.
Hsu
,
Y.-L. P.
Tsai
, and
M. S.
Raju
, “
Probability density function approach for compressible turbulent reacting flows
,”
AIAA J.
7
,
1407
(
1994
).
29.
C. Dopazo, Recent developments in pdf methods, in Turbulent Reacting Flows, edited by P. A. Libby (Academic Press, New York, 1994).
30.
W. C. Welton and S. B. Pope, “A pdf-based particle method for compressible turbulent flows,” AIAA Paper No. 95-0804, 1995.
31.
B. J.
Delarue
and
S. B.
Pope
, “
Application of pdf methods to compressible turbulent flows
,”
Phys. Fluids A
9
,
2704
(
1997
).
32.
Gmelin, Handbook of Inorganic Chemistry: F Fluorine Suppl. (Springer-Verlag, Berlin, 1980), Vol. 2.
33.
M. G.
Mungal
and
P. E.
Dimotakis
, “
Mixing and combustion with low heat release in a turbulent shear layer
,”
J. Fluid Mech.
148
,
349
(
1984
).
34.
M. W. Chase, C. A. Davies, J. R. Downey, D. J. Frurip, R. A. McDonald, and A. N. Syverud, “Janaf thermochemical tables,” J. Phys. Chem. Ref. Data 14 (1985).
35.
A. T.
Norris
and
S. B.
Pope
, “
Modeling of extinction in turbulent diffusion flames by the velocity-dissipation-composition pdf method
,”
Combust. Flame
100
,
211
(
1995
).
36.
R. W. Bilger, “Turbulent flows with nonpremixed reactants” in Ref. 29, Chap. 3, pp. 65–113.
37.
J. C.
Hermanson
and
P. E.
Dimotakis
, “
Effects of heat release in a turbulent, reacting shear layer
,”
J. Fluid Mech.
199
,
333
(
1989
).
38.
S. R. Turns, An Introduction to Combustion (McGraw-Hill, New York, 1996).
39.
D. C.
Haworth
and
S. B.
Pope
, “
A generalized Langevin model for turbulent flows
,”
Phys. Fluids
29
,
387
(
1986
).
40.
Jayesh and S. B. Pope, “Stochastic model for turbulent frequency,” Technical report FDA 95-05, Cornell University, 1995.
41.
C.
Dopazo
, “
Probability density function approach for a turbulent axisymmetric heated jet. Centerline evolution
,”
Phys. Fluids
18
,
397
(
1975
).
42.
G.
Erlebacher
,
M. Y.
Hussaini
,
H. O.
Kreiss
, and
S.
Sarkar
, “
The analysis and simulation of compressible turbulence
,”
Theor. Comput. Fluid Dyn.
2
,
73
(
1990
).
43.
J. L. Lumley and H. Tennekes, A First Course in Turbulence (MIT Press, Cambridge, 1972).
44.
D. W.
Bogdanoff
, “
Compressibility effects in turbulent shear layers
,”
AIAA J.
21
,
926
(
1983
).
45.
G. L.
Brown
and
A.
Roshko
, “
On density effects and large structures in turbulent mixing layers
,”
J. Fluid Mech.
64
,
775
(
1974
).
46.
A. W.
Vreman
,
N. D.
Sandham
, and
K. H.
Luo
, “
Compressible mixing layer growth rate and turbulence characteristics
,”
J. Fluid Mech.
320
,
235
(
1996
).
47.
A.
Kumar
,
D. M.
Bushnell
, and
M. Y.
Hussaini
, “
Mixing augmentation techniques for hypervelocity scramjets
,”
AIAA J. Prop. Power
5
,
314
(
1989
).
This content is only available via PDF.
You do not currently have access to this content.