The space—time behavior of initial density perturbations (acoustic mode) in hot plasmas is analyzed, including second‐order effects, using a one‐dimensional Cauchy velocity distribution of the form (v2 + a2)−2 for the equilibrium distribution. The initial density perturbation is assumed to be sinusoidal in space and to have the same Cauchy velocity distribution. The first‐order solution has an exact analytic form which gives damped oscillations at a thermally shifted plasma frequency. The nonlinear interference between the density wave and its electric field produces second harmonics in both space and time which appear in the analytic second‐order solution. The harmonic structure suggests a ``spectral decay'' of the initial perturbation energy. In general, the oscillation frequency and damping decrement increase with temperature so that at sufficiently high temperatures, all forms of ordered motion are destroyed by the random thermal motion.

1.
A.
Vlasov
,
J. Phys. (USSR)
9
,
25
(
1945
).
2.
L.
Landau
,
J. Phys. (USSR)
10
,
25
(
1946
).
3.
D.
Bohm
and
E. P.
Gross
,
Phys. Rev.
75
,
1851
,
1864
(
1949
).
4.
N. G.
Van Kampen
,
Physica
21
,
949
(
1955
).
5.
F.
Berz
,
Proc. Phys. Soc. (London)
B68
,
939
(
1956
).
6.
K. M.
Case
,
Ann. Phys.
7
,
349
(
1959
).
7.
J. D.
Jackson
,
J. Nucl. Energy
C1
,
171
(
1960
).
8.
H. Cramer, Mathematical Methods of Statistics (Princeton University Press, Princeton, New Jersey, 1946), p. 246.
9.
L. Spitzer, Jr., Physics of Fully Ionized Gases (Inter‐science Publishers, Inc., New York, 1956), Sec. 2.1.
10.
J. F. P.
Hudson
,
Proc. Cambridge Phil. Soc.
58
,
1
,
119
(
1962
).
11.
J.
Dawson
,
Phys. Fluids
4
,
869
(
1961
).
12.
P. D.
Noerdlinger
,
Phys. Rev.
118
,
879
(
1960
).
13.
H. K.
Sen
,
Phys. Rev.
97
,
849
(
1955
).
14.
R. W. Gould, Ph.D. Thesis, California Institute of Technology (1955).
15.
J. M.
Dawson
,
Phys. Rev.
113
,
383
, (
1959
);
“The Breaking of Large Amplitude Plasma Oscillations,” Princeton University, Project Matterhorn Report MATT‐31 (1960).
16.
P. A.
Sturrock
,
Proc. Roy. Soc. (London)
A242
,
277
(
1957
).
17.
D.
Montgomery
,
Phys. Rev.
123
,
1077
(
1961
);
D.
Montgomery
and
D.
Gorman
,
Phys. Rev.
124
,
1309
(
1961
).
18.
J. A. Stratton, Electromagnetic Theory (McGraw‐Hill Book Company, Inc., New York, 1941), Sec. 5.12.
19.
M. J. Kofoid, Nuclear Fusion (to be published).
20.
M.
Caulton
,
B.
Hershenov
, and
F.
Paschke
,
J. Appl. Phys.
33
,
800
(
1962
).
21.
J. P.
Wild
,
Aust. J. Sci. Res.
A3
,
541
(
1950
);
J. P. Wild, K. V. Sheridan and G. H. Trent, “The Transverse Motions of the Sources of Solar Bursts,” in Paris Symposium on Radio Astronomy, edited by R. N. Bracewell (Stanford University Press, Palo Alto, California, 1959), p. 176.
22.
J. P.
Wild
,
J. D.
Murray
and
W. C.
Rowe
,
Aust. J. Phys.
7
,
439
(
1954
).
23.
J. A.
Roberts
,
Aust. J. Phys.
12
,
327
(
1959
).
24.
D. A.
Tidman
,
Phys. Fluids
5
,
1104
(
1962
).
This content is only available via PDF.
You do not currently have access to this content.