The existence of a discontinuity in the Strouhal–Reynolds number relationship for the laminar vortex shedding of a cylinder is found to be caused by a change in the mode of oblique shedding. By ‘‘inducing’’ parallel shedding (from manipulating end conditions) the resulting Strouhal curve becomes completely continuous and agrees very well with the oblique‐shedding data, if it is transformed by S0=Sθ/cos θ (where Sθ is the Strouhal number corresponding with the oblique‐shedding angle θ). The curve also agrees with data from a completely different facility. This provides evidence that this Strouhal curve (S0) is universal (for a circular cylinder).

1.
A. Roshko, NACA Report 1191, 1954.
2.
D. J.
Tritton
,
J. Fluid Mech.
6
,
547
(
1959
).
3.
E.
Berger
,
Z. Flugwiss.
12
,
41
(
1964
).
4.
M.
Gaster
,
J. Fluid Mech.
38
,
565
(
1969
).
5.
M.
Gaster
,
J. Fluid Mech.
46
,
749
(
1971
).
6.
C. Mathis, M. Provansal, and L. Boyer, in Proceedings of the Second International Symposium on Applications of Laser Anemometry to Fluid Mechanics (Ladoan Institute Superior Tecnico, Lisbon, 1984), p. 12.5.
7.
J. H.
Gerrard
,
Philos. Trans. R. Soc. London Ser. A
288
,
351
(
1978
).
8.
K. R. Sreenivasan, in Frontiers in Fluid Mechanics, edited by S. H. Davis and J. L. Lumley (Springer, Berlin, 1985), p. 41.
9.
C. W.
Van Atta
and
M.
Gharib
,
J. Fluid Mech.
174
,
113
(
1987
).
10.
D.
Gerich
and
H.
Eckelmann
,
J. Fluid Mech.
122
,
109
(
1982
).
11.
H. Eisenlohr, Diplom. thesis, Max‐Planck‐Institüt für Strömungsforschung, Göttingen, 1986.
12.
H. Eisenlohr (private communication).
13.
S. E.
Ramberg
,
J. Fluid Mech.
128
,
81
(
1983
).
14.
G. L. Brown (private communication).
15.
G. E. Karniadakis and G. S. Triantafyllou, submitted to J. Fluid Mech.
This content is only available via PDF.
You do not currently have access to this content.