The results from 1‐D numerical simulations of electrostatic ion cyclotron waves (EIC) are presented for a model in which the electrons are a resistive (collisional) fluid. Simulations of both the kinetic and fluid descriptions are performed and compared in order to assess the fundamental limitations of fluid theory for EIC waves. The effect of ion–neutral collisions is also included using a simple Monte Carlo technique. It is found that a small ion–neutral collision frequency destroys the frequency harmonic coupling of kinetic EIC waves and tends to validate the fluid description. The saturation amplitude of the current driven EIC instability is in agreement with recent laboratory experiments. The coherent nature (extremely narrow spectral width) and phase velocity agree with ground based (coherent backscatter radars) and insitu observations of current‐driven EIC waves in the high latitude ionosphere.

1.
P.
Amendt
,
Phys. Fluids
29
,
1458
(
1986
).
2.
G.
Martelli
,
P. N.
Collis
,
M.
Giles
, and
P. J.
Christiansen
,
Planet. Space Sci.
25
,
643
(
1977
).
3.
B. G.
Fejer
,
R. W.
Reed
,
D. T.
Farley
,
W. E.
Swartz
, and
M. C.
Kelley
,
J. Geophys. Res.
89
,
187
(
1984
).
4.
E. A.
Bering
,
J. Geophys. Res.
89
,
1635
(
1984
).
5.
J.
Providakes
,
D. T.
Farley
,
W. E.
Swartz
, and
D.
Riggin
,
J. Geophys. Res.
90
,
7513
(
1985
).
6.
C. I.
Haldoupis
,
G.
Prikryl
,
G. J.
Sofko
, and
J. A.
Koehler
,
J. Geophys. Res.
90
,
10983
(
1985
).
7.
N.
D’Angelo
and
R. W.
Motley
,
Phys. Fluids
5
,
633
(
1962
).
8.
D. M.
Suszcynsky
,
S. L.
Cartier
,
R. L.
Merlino
, and
N.
D’Angelo
,
J. Geophys. Res.
91
,
13729
(
1986
).
9.
P. K.
Chaturvedi
,
J. Geophys. Res.
81
,
6169
(
1976
).
10.
F. F. Chen, Plasma Physics and Controlled Fusion (Plenum, New York, 1984), 2nd ed., pp. 109–111.
11.
D. R. Nicholson, Introduction to Plasma Theory (Wiley, New York, 1983), pp. 146–150.
12.
C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulations (McGraw‐Hill, New York, 1985).
13.
S. A.
Orszag
,
Stud. Appl. Math.
50
,
293
(
1971
).
14.
J. M.
Kindel
and
C. F.
Kennel
,
J. Geophys. Res.
76
,
3055
(
1971
).
15.
P.
Satyararayana
,
P. K.
Chaturvedi
,
M. J.
Keskinen
,
J. D.
Huba
, and
S. L.
Ossakow
,
J. Geophys. Res.
90
,
12
,
209
(
1985
).
16.
H.
Okuda
,
C. Z.
Cheng
, and
W. W.
Lee
,
Phys. Fluids
24
,
1060
(
1981
).
17.
H.
Okuda
and
M.
Ashour‐Abdalla
,
Geophys. Res. Lett.
8
,
811
(
1981
).
18.
M.
Ashour‐Abdalla
,
H.
Okuda
, and
C. Z.
Cheng
,
Geophys. Res. Lett.
8
,
795
(
1981
).
19.
P. J.
Palmadesso
,
T. P.
Coffey
,
S. L.
Ossakow
, and
K.
Papadopoulos
,
Geophys. Res. Lett.
1
,
105
(
1974
).
20.
G.
Benford
,
J. Plasma Phys.
15
,
431
(
1976
).
21.
M.
Temerin
,
M.
Woldoff
, and
F. S.
Mozer
,
Phys. Fluids
26
,
1941
(
1979
).
22.
M. C.
Kelley
,
E. A.
Bering
, and
F. S.
Mozer
,
Phys. Fluids
18
,
1590
(
1975
).
23.
W. E.
Drummond
and
M. N.
Rosenbluth
,
Phys. Fluids
5
,
1507
(
1962
).
24.
M. K.
Hudson
and
I.
Roth
,
J. Geophys. Res.
89
,
9812
(
1984
).
25.
M.
Kono
,
Phys. Fluids
28
,
1498
(
1985
).
26.
B. G. Fejer and J. Providakes, Phys. Scr., in press.
27.
R. C. Davidson, Methods in Nonlinear Plasma Theory (Academic, New York, 1972), pp. 101–129.
This content is only available via PDF.
You do not currently have access to this content.