Utilizing the formalism of path integrals, the intensity moments of waves propagated through anisotropic inhomogeneous random media in the presence of a deterministic wave speed variation can be formed. In the saturated scattering regime, intensity fluctuations are expected to be Rayleigh distributed to first order. A correction to Rayleigh statistics is calculated that results in a form for the intensity moments: 〈In〉=n!〈In[1+ 1/2 n(n−1)γ], where γ depends on the fluctuation spectrum of the medium. It is shown that the correction can be approximated by an integral along the ray of a spectrally weighted local contribution. This local contribution, called the micropath focusing function, depends both on the spectrum of the medium, and on a Green’s function which is shown to be related to the phase curvature. In the straight line horizontal ray approximation, the ‘‘micropath focusing parameter’’ γ can be approximated by 3/(2 ln Φ) in the partially saturated regime, and by [0.83/(ln Φ)3/2](1/ΛΦ) in the saturated regime, where Φ and Λ are the strength and diffraction parameters for medium fluctuations along a ray. The internal wave spectrum is chosen as an example for fluctuations in oceanic sound transmission. Theoretical results are obtained for curved rays by numerical integration, and are compared with observations from three ocean acoustics experiments.

1.
V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (Israel Program for Scientific Translation, Jerusalem, 1971). (Available from the National Technical Information Service, Springfield, Virginia).
2.
B. Uscinski, The Elements of Wave Propagation in a Random Medium (McGraw‐Hill, New York, 1977).
3.
A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).
4.
V. U.
Zavorotnyi
,
V. I.
Tatarski
, and
V. I.
Klyatskin
,
Sov. Phys. JETP
46
,
252
(
1977
).
5.
V. U.
Zavorotnyi
,
Sov. Phys. JETP
48
,
27
(
1978
).
6.
V. I. Tatarski and V. U. Zavorotnyi, Progress in Optics, edited by E. Wolf (North‐Holland, Amsterdam, 1980), Vol. 18, pp. 205–256.
7.
K.
Furutsu
,
J. Math. Phys.
17
,
1252
(
1976
).
8.
K.
Furutsu
,
Radio Sci.
14
,
287
(
1979
).
9.
S.
Ito
and
K.
Furutsu
,
J. Opt. Soc. Am.
72
,
760
(
1982
).
10.
M.
Leontovich
and
V.
Fok
,
Zh. Eksp. Teor. Fiz.
16
,
557
(
1946
).
11.
R. Feynman and A. Hibbs, Quantum Mechanics and Path Integrals (McGraw‐Hill, New York, 1957).
12.
R.
Dashen
,
J. Math. Phys.
20
,
894
(
1979
).
13.
S. M. Flatte, R. Dashen, W. H. Munk, K. M. Watson, and F. Zachariasen, Sound Transmission through a Fluctuating Ocean (Cambridge U.P., New York, 1979).
14.
A. W. Ellinthorpe, B. G. Buehler, and H. Freese, Naval Underwater Systems Center Technical Memoranda associated with the Joint Ocenaogra‐phic/Acoustic Experiment, NUSC Nos. 4551, 3103‐66‐77, and 4647, New London, Connecticut, 1977.
15.
B. G. Buehler, Naval Underwater Systems Center Technical Report No. 5785, 1979.
16.
J. L.
Speisberger
, and
P. F.
Worcester
,
J. Acoust. Soc. Am.
70
,
565
(
1981
).
17.
J. L.
Speisberger
,
R. C.
Spindel
, and
K.
Mezger
,
J. Acoust. Soc. Am.
7
,
2011
(
1980
).
18.
P. F.
Worcester
,
G. O.
Williams
, and
S. M.
Flatte
,
J. Acoust. Soc. Am.
70
,
825
(
1981
).
19.
G.
Parry
,
Opt. Acta
28
,
715
(
1981
).
20.
M. E. Gracheva, A. S. Gurvich, S. S. Kashkarov, and V. V. Pokasov, in Laser Beam Propagation in the Atmosphere, edited by J. W. Strohbehn (Springer‐Verlag, Berlin, 1978).
21.
E. J.
Fremouw
,
R. L.
Leadabrand
,
R. C.
Livingston
,
M. D.
Cousins
,
C. L.
Rino
,
B. C.
Fair
, and
R. A.
Long
,
Radio Sci.
13
,
167
(
1978
).
22.
S. M.
Flatté
,
R.
Leung
, and
S. Y.
Lee
,
J. Acoust. Soc. Am.
68
,
1773
(
1980
).
23.
R.
Esswein
and
S. M.
Flatté
,
J. Acoust. Soc. Am.
67
,
1523
(
1980
).
24.
R.
Esswein
and
S. M.
Flatté
,
J. Acoust. Soc. Am.
70
,
1387
(
1981
).
25.
W. H.
Munk
and
F.
Zachariasen
,
J. Acoust. Soc. Am.
59
,
818
(
1976
).
26.
F.
Dyson
,
W.
Munk
, and
B.
Zetler
,
J. Acoust. Soc. Am.
59
,
1121
(
1976
).
27.
S. M.
Flatté
and
F. D.
Tappert
,
J. Acoust. Soc. Am.
58
,
1151
(
1975
).
28.
R. P.
Porter
,
R. C.
Spindel
, and
R. J.
Jaffee
,
J. Acoust. Soc. Am.
56
,
1426
(
1974
).
29.
R. P.
Porter
and
R. C.
Spindel
,
J. Acoust. Soc. Am.
56
,
440
(
1974
).
30.
Y. J. F.
Desaubies
,
J. Acoust. Soc. Am.
60
,
795
(
1977
).
31.
W.
Jobst
and
J.
Clark
,
J. Acoust. Soc. Am.
61
,
688
(
1977
).
32.
Y. J. F.
Desaubies
,
J. Acoust. Soc. Am.
64
,
1460
(
1978
).
33.
C.
Garrett
and
W. H.
Munk
,
Geophys. Fluid Dyn.
2
,
225
(
1972
).
34.
C.
Garrett
and
W. H.
Munk
,
J. Geophys. Res.
80
,
291
(
1975
).
35.
J. L.
Cairns
and
G. O.
Williams
,
J. Geophys. Res.
81
,
1943
(
1976
).
36.
S. M. Flatté and J. B. Jordan, Master’s thesis, University of California, Santa Cruz, 1982.
This content is only available via PDF.
You do not currently have access to this content.