An energy principle is used to obtain the solution of the magnetohydrodynamic (MHD) equilibrium equation J×B−∇p=0 for nested magnetic flux surfaces that are expressed in the inverse coordinate representation x=x(ρ, θ, ζ). Here, θ are ζ are poloidal and toroidal flux coordinate angles, respectively, and p=p(ρ) labels a magnetic surface. Ordinary differential equations in ρ are obtained for the Fourier amplitudes (moments) in the doubly periodic spectral decomposition of x. A steepest‐descent iteration is developed for efficiently solving these nonlinear, coupled moment equations. The existence of a positive‐definite energy functional guarantees the monotonic convergence of this iteration toward an equilibrium solution (in the absence of magnetic island formation). A renormalization parameter λ is introduced to ensure the rapid convergence of the Fourier series for x, while simultaneously satisfying the MHD requirement that magnetic field lines are straight in flux coordinates. A descent iteration is also developed for determining the self‐consistent value for λ.

1.
M. D.
Kruskal
and
R. M.
Kulsrud
,
Phys. Fluids
1
,
265
(
1958
).
2.
H.
Grad
,
Phys. Fluids
7
,
1283
(
1964
).
3.
R.
Chodura
and
A.
Schlüter
,
J. Comput. Phys.
41
,
68
(
1981
).
4.
F. Bauer, O. Betancourt, and P. Garabedian, A Computational Method in Plasma Physics (Springer‐Verlag, New York, 1978);
Phys. Fluids
24
,
48
(
1981
).
5.
L. L.
Lao
,
S. P.
Hirshman
, and
R. M.
Wieland
,
Phys. Fluids
24
,
1431
(
1981
).
6.
V. D. Pustovitov, V. D. Shafranov, L. E. Zakharov, L. M. Degtyarev, V. V. Drozdov, S. Y. Medvedev, and M. I. Mikhajlov, in Plasma Physics and Controlled Nuclear Fusion Research (IAEA, Vienna, 1982), Paper IAEA‐CN‐41/V‐5.
7.
A. Bhattacharjee, J. C. Wiley, and R. L. Dewar (submitted to Phys. Fluids).
8.
J. M.
Greene
,
J. L.
Johnson
, and
K. E.
Weimer
,
Phys. Fluids
14
,
671
(
1971
).
9.
S.
Hamada
,
Nucl. Fusion
1
,
23
(
1962
).
10.
P.
Garabedian
,
Math. Tables Aids Comput.
10
,
183
(
1956
).
11.
G. D. Smith, Numerical Solution of Partial Differential Equations (Oxford U.P., London, 1965).
12.
L. S.
Solov’ev
,
Sov. Phys.‐JETP
26
,
400
(
1968
).
13.
J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables (Academic, New York, 1970), p. 21.
14.
P. J. Davis and P. Rabinowitz, Methods of Numerical Integration (Academic, New York, 1975), p. 106ff.
15.
S. A.
Orszag
,
J. Comput. Phys.
37
,
70
(
1980
).
16.
F.
Bauer
,
O. L.
Betancourt
,
P. R.
Garabedian
, and
J. L.
Shohet
,
IEEE Trans. Plasma Sci.
PS‐9
,
239
(
1981
).
17.
J. F. Lyon, B. A. Carreras, J. H. Harris, J. A. Rome, R. A. Dory, L. Garcia, T. C. Hender, S. P. Hirshman, T. C. Jernigan, J. Sheffield, L. A. Charlton, R. H. Fowler, H. R. Hicks, J. A. Holmes, V. E. Lynch, B. F. Masden, D. L. Goodman, and S. A. Hokin, in Plasma Physics and Controlled Nuclear Fusion Research (IAEA, Vienna, 1982), Paper IAEA‐CN‐41/Q3.
18.
A.
Schlüter
and
U.
Schwenn
,
Comput. Phys. Comm.
24
,
263
(
1981
).
This content is only available via PDF.
You do not currently have access to this content.