The resonant decay of cold electron plasma waves was investigated in the Princeton L‐3 device in an argon plasma with n∼1010–1011 cm−3, B∼700 G–2 kG, f0∼50–80 MHz (ω0⩾10 ωlh). The decay waves were identified to be ion‐acoustic waves and cold electron plasma waves. Because of convective losses in the finite extent pump field, the threshold for parametric decay is considerably higher than the collisional threshold for the dominant E0⊥×B coupling. Coupling due to E0∥ can be important in low density, high magnetic field plasmas. At high densities (n≳3×1010 cm−3), E0⊥×B coupling becomes dominant. The E0⊥×B decay convective threshold was measured at various antenna lengths, magnetic field strengths, and plasma densities. The experimental results are in good agreement with theory. Indication of pump depletion and enchanced Landau heating of electrons were observed in the parametric decay process.

1.
T. H.
Stix
,
Phys. Rev. Lett.
15
,
878
(
1965
).
2.
S. Bernabei, C. Daughney, W. Hooke, R. W. Motley, T. Nagashima, M. Porkolab, and S. Suckewer, in Third Symposium on Plasma Heating in Toroidal Devices, Verenna, Italy (Editrice Compositori, Bologna, Italy, 1976), p. 68;
also
M.
Porkolab
,
S.
Bernabei
,
W. M.
Hooke
,
R. W.
Motley
, and
T.
Nagashima
,
Phys. Rev. Lett.
38
,
230
(
1977
).
3.
H. D.
Pacher
,
P.
Blanc
,
M.
Curvaux
,
C.
Gormezano
,
W.
Hess
,
G.
Ichtchenko
,
P.
Lassia
,
R.
Magne
,
T. K.
Kguyen
,
W.
Ohlendorf
,
G. W.
Pacher
,
F.
Soeldner
,
G.
Tonon
, and
J. G.
Wegrowe
,
Bull. Am. Phys. Soc.
22
,
1169
(
1977
);
in Proceedings of the Third Topical Conference of RF Heating of Plasmas (California Institute of Technology, Pasadena, California, 1978), paper A‐3.
4.
M.
Porkolab
,
Phys. Fluids
17
,
1432
(
1974
).
5.
R. P. H.
Chang
and
M.
Porkolab
,
Phys. Rev. Lett.
32
,
1277
(
1974
).
6.
M. Porkolab, in Symposium on Plasma Heating in Toroidal Devices, Varenna, Italy (Editrice Compositori, Bologna, Italy, 1974), p. 41.
7.
M.
Porkolab
,
Phys. Fluids
20
,
2058
(
1977
).
8.
R. L.
Berger
,
L.
Chen
,
P.
Kaw
, and
F. W.
Perkins
,
Phys. Fluids
20
,
1864
(
1977
).
9.
R. K.
Fisher
and
R. W.
Gould
,
Phys. Fluids
14
,
857
(
1971
).
10.
P.
Bellan
and
M.
Porkolab
,
Phys. Fluids
19
,
995
(
1976
).
11.
M.
Porkolab
and
R. P. H.
Chang
,
Phys. Fluids
13
,
2054
(
1970
).
12.
D.
Pesme
,
G.
Laval
, and
R.
Pellat
,
Phys. Rev. Lett.
31
,
203
(
1973
).
13.
M.
Rosenbluth
,
Phys. Rev. Lett.
29
,
565
(
1972
).
14.
A.
Reiman
,
Phys. Fluids
21
,
1000
(
1978
).
15.
K. L.
Wong
,
P.
Bellan
, and
M.
Porkolab
,
Phys. Rev. Lett.
40
,
554
(
1978
).
16.
M.
Porkolab
,
V.
Arunasalam
, and
N. C.
Luhmann
, Jr.
,
Plasma Phys.
17
,
405
(
1975
).
17.
M.
Porkolab
,
V.
Arunasalam
,
N. C.
Luhmann
, Jr.
, and
J. P. M.
Schmitt
,
Nucl. Fusion
16
,
269
(
1976
).
18.
S.
Bernabei
,
M.
Heald
,
W.
Hooke
,
R.
Motley
,
F.
Paoloni
,
M.
Brambilla
, and
W.
Getty
,
Nucl. Fusion
17
,
929
(
1977
).
19.
R. W. Boswell, in Proceedings of the Seventh European Conference on Controlled Fusion and Plasma Physics Lausanne (Centre de Recherches en Physique des Plasma, Lausanne, Switzerland, 1975), p. 175;
see also
R. W.
Boswell
,
Phys. Lett. A
55
,
93
;
and
C. F.
Kennel
,
Phys. Lett. A
30
,
597
(
1973
).
20.
R. R. Weynants, P. Javel, and G. Muller, in Proceedings of the Topical International Conference on Theoretical and Experimental Aspects of Heating of Toroidal Plasmas, Grenoble (Commissariat a L’Energie Atomique, Paris, 1976), Vol. II, p. 421.
21.
W.
Gekelman
and
R. L.
Stenzel
,
Rev. Sci. Instrum.
46
,
1386
(
1975
).
22.
J. J.
Schuss
,
S. A.
Fairfax
,
B. R.
Kusse
,
R. R.
Parker
,
M.
Porkolab
, and
D. S.
Pappas
,
Bull. Am. Phys. Soc.
23
,
765
(
1978
).
This content is only available via PDF.
You do not currently have access to this content.