The stability of ion‐drift‐wave eigenmodes in a slab geometry with a sheared magnetic field is investigated. It is found that in contrast to the case of universal and dissipative electron‐drift‐wave eigenmodes, unstable impurity‐driven normal modes can appear if specific conditions are satisfied. In addition, the influence of impurities on unstable ion‐temperature‐gradient‐driven drift eigenmodes is also studied. It is found that, if their density profile is inwardly peaked, the impurities can exert a strong stabilizing influence on these modes.
REFERENCES
1.
K. T.
Tsang
, P. J.
Catto
, J. C.
Whitson
, and J.
Smith
, Phys. Rev. Lett.
40
, 327
(1978
); , Phys. Rev. Lett.
L.
Chen
, P. N.
Guzdar
, R. B.
White
, P. K.
Kaw
, and C.
Oberman
, Phys. Rev. Lett.
41
, 649
(1978
)., Phys. Rev. Lett.
2.
P. N.
Guzdar
, L.
Chen
, P. K.
Kaw
, and C.
Oberman
, Phys. Rev.
40
, 1566
(1978
).3.
B.
Coppi
, H. P.
Furth
, M. N.
Rosenbluth
, and R. Z.
Sagdeev
, Phys. Rev. Lett.
17
, 377
(1966
).4.
5.
L. I.
Rudakov
and R. Z.
Sagdeev
, Dokl. Akad. Nauk SSSR
138
, 531
(1961
)[
L. I.
Rudakov
and R. Z.
Sagdeev
, Sov. Phys.‐Dokl.
6
, 415
(1961
)].6.
7.
B. B. Kadomtsev and O. P. Pogutse, in Reviews of Plasma Physics, edited by M. A. Leontovlch (Consultants Bureau, New York, 1970), Vol. 5, p. 303.
8.
R. E. Waltz, W. Pfeiffer, and R. R. Dominquez, General Atomic Company Report GA‐A15147 (1978).
9.
B. D. Fried and S. D. Conte, The Plasma Dispersion Function (Academic, New York, 1961).
10.
J. Heading, An Introduction to Phase Integral Methods (Wiley, New York, 1962).
11.
R. W. Hamming, Numerical Methods for Scientists and Engineers (McGraw‐Hill, New York, 1962), p. 215.
12.
13.
This content is only available via PDF.
© 1980 American Institute of Physics.
1980
American Institute of Physics
You do not currently have access to this content.