Particle simulations of the expansion of a collisionless plasma into vacuum are presented. The cases of a single‐electron‐temperature plasma and of a two‐electron‐temperature plasma are considered. The results confirm the existence of an ion front and verify the general features of self‐similar solutions behind this front. A cold electron front is clearly observed in the two‐electron‐temperatures case. The computations also show that for a finite electron‐to‐ion mass ratio, me/mi, the electron thermal velocity in the expansion region is not constant, but decreases approximately linearly with ξ=x/t, where x is distance and t is time. A self‐similar solution, derived from the relation Ten1−γe=const, where Te is the electron temperature, ne is the electron density, and γ is a constant (instead of the isothermal assumption made in earlier theories), yields a linearly decreasing ion acoustic speed, cc0−(γ−1) ξ/2, and comparison with computer simulation results show that the constant γ−1 is proportional to (Zme/mi)1/2, where Z is the ion charge number.

1.
G. Charatis, J. Downward, R. Goforth, B. Guscott, T. Henderson, S. Hildum, R. Johnson, K. Moncur, T. Leonard, F. Mayer, S. Secall, L. Siebert, D. Solomon, and C. Thomas, in Plasma Physics and Controlled Nuclear Fusion Research (International Atomic Energy Agency, Vienna, 1975), p. 317.
2.
J. E.
Allen
and
J. G.
Andrews
,
J. Plasma Phys.
4
,
187
(
1970
).
3.
A. V.
Gurevich
,
L. V.
Pariiskaya
, and
L. P.
Pitaevskii
,
Zh. Eksp. Teor. Fiz.
49
,
647
(
1965
)
[
A. V.
Gurevich
,
L. V.
Pariiskaya
, and
L. P.
Pitaevskii
,
Sov. Phys.‐JETP
22
,
449
(
1966
)].
4.
A. V.
Gurevich
,
L. V.
Pariiskaya
, and
L. P.
Pitaevskii
,
Zh. Eksp. Teor. Fiz.
54
,
891
(
1968
)
[
A. V.
Gurevich
,
L. V.
Pariiskaya
, and
L. P.
Pitaevskii
,
Sov. Phys.‐JETP
27
,
476
(
1968
)];
A. V.
Gurevich
and
L. P.
Pitaevskii
,
Zh. Eksp. Teor. Fiz.
56
,
1778
(
1969
)
[
A. V.
Gurevich
and
L. P.
Pitaevskii
,
Sov. Phys.‐JETP
29
,
954
(
1969
)].
5.
J. E.
Crow
,
P. L.
Auer
, and
J. E.
Allen
,
J. Plasma Phys.
14
,
65
(
1975
).
6.
B.
Bezzerides
,
D. W.
Forslund
, and
E. L.
Lindman
,
Phys. Fluids
21
,
2179
(
1978
).
7.
L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Addison‐Wesley, Reading, Mass., 1959), Sec. 92.
8.
J.
Denavit
,
J. Comput. Phys.
9
,
75
(
1972
).
This content is only available via PDF.
You do not currently have access to this content.