The condensation of SF6 in a dilute mixture with either Ar or He as a carrier gas when quickly expanded in a small, adjustable nozzle is investigated. Condensation is observed by monitoring the disappearance of individual rotational‐state lines in the SF6 ν4 absorption band. For this, a diode‐laser spectroscopy system is employed, the nozzle is two dimensional, and the flows are short‐duration pulses. The gas density at which condensation onset occurs is measured as a function of local gas temperature (30°–100° K), local expansion rate, and SF6 mole fraction (0.18%–3.4%). The onset density depends strongly on the local temperature and expansion rate and not at all on the mole fraction. For the SF6/Ar data, Ar co‐condensation appears to reduce the SF6 onset density level at the lowest mole fractions, and SF6 vibrational lag appears to increase the onset density level at the highest mole fractions. A simple ’’trimers‐critical’’ model for condensation onset is derived, and with this model reasonable correlation of much of the onset data is obtained. From this correlation, an effective dimer binding energy and trimer formation probability are extracted.

1.
B. J. C.
Wu
,
P. P.
Wegener
, and
G. D.
Stein
,
J. Chem. Phys.
68
,
308
(
1978
).
2.
C. E.
Smith
,
J. Fluid Mech.
24
,
625
(
1966
).
3.
G. Herzberg, Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand, New York, 1945).
4.
D. Jackson, Los Alamos Scientific Laboratory Report LA‐6025‐MS (1975).
5.
T. C. Harman, The Physics of Semimetals and Narrow Gap Semiconductors, edited by D. L. Carter and R. L. Bate (Pergamon, New York, 1971), p. 363.
6.
E. D.
Hinkley
,
K. W.
Nill
, and
F. A.
Blum
,
Laser Focus
12
,
47
(
1976
).
7.
I. Melngailis and A. Mooradian, Physics of Quantum Electronics, Vol. 2, Laser Applications to Optics and Spectroscopy, edited by S. F. Jacobs, M. Sargent, III, J. F. Scott, and M. O. Scully (Addison‐Wesley, Reading, Mass., 1974), p. 1.
8.
K. W.
Nill
,
F. A.
Blum
,
A. R.
Calawa
, and
T. C.
Harman
,
Appl. Phys. Lett.
21
,
132
(
1972
).
9.
E. D.
Hinkley
,
A. R.
Calawa
,
P. L.
Kelley
, and
S. D.
Clough
,
J. Appl. Phys.
43
,
3222
(
1972
).
10.
M. J. Reisfeld (private communication).
11.
S. R. Drayson, University of Michigan, High Altitude Engineering Laboratory, Report ORA‐036350‐4‐T (1973).
12.
R. S.
McDowell
,
J. P.
Aldridge
, and
R. F.
Holland
,
J. Phys. Chem.
80
,
1203
(
1976
).
13.
P. N.
Schatz
and
D. F.
Hornig
,
J. Chem. Phys.
21
,
1516
(
1953
).
14.
J. H. Schachtschneider, Ph.D. dissertation, University of Minnesota (1960).
15.
W. B.
Person
and
J.
Overend
,
J. Chem. Phys.
66
,
1442
(
1977
).
16.
R. S. McDowell (private communication).
17.
J. I.
Steinfeld
,
I.
Burak
,
D. G.
Sutton
, and
A. V.
Nowak
,
J. Chem. Phys.
52
,
5421
(
1970
).
18.
W. D.
Breshears
and
L. S.
Blair
,
J. Chem. Phys.
59
,
5824
(
1973
).
19.
J. A. Brown, Kirk‐Othmer Encyclopedia of Chemical Technology (Interscience, New York, 1966), 2nd ed., Vol. 9. p. 664.
20.
G. G. Schlessinger, CRC Handbook of Chemistry and Physics (Chemical Rubber Company, Cleveland, Oh., 1972), 53rd ed., p. D‐171.
21.
J. E. Mayer and M. G. Mayer, Statistical Mechanics (Wiley, New York, 1940).
22.
J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).
This content is only available via PDF.
You do not currently have access to this content.