Surface tension restoring forces are investigated for low amplitude gravity waves propagating in narrow channels. Liquids which do not wet the container walls experience a nonuniform displacement of the meniscus as the wave passes. The variation of surface curvature leads to a surface tension force which increases the velocity of the gravity wave. The effect is substantial in experiments with water in Plexiglass channels. The dependence on channel width and contact angle has been investigated, and agreement is found with a simple theoretical model. Addition of a wetting agent to the water eliminates the effect, decreasing the velocity to within 1% of the classical dispersion relation.

1.
L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon, London, 1959).
2.
N. L.
Walbridge
and
L. A.
Woodward
,
Phys. Fluids
13
,
2461
(
1970
).
3.
D.
Heckerman
,
S.
Garrett
, and
G.
Williams
,
Bull. Am. Phys. Soc.
23
,
996
(
1978
);
D.
Heckerman
,
Bull. Am. Phys. Soc.
24
,
37
(
1979
).,
Bull. Am. Phys. Soc.
4.
J. C.
Scott
and
T. B.
Benjamin
,
Nature
276
,
803
(
1978
).
5.
T. B.
Benjamin
and
J. C.
Scott
,
J. Fluid Mech.
92
,
241
(
1979
).
6.
F. C.
Goodrich
,
Proc. Roy. Soc. London Ser. A
260
,
490
(
1961
).
7.
Handbook of Chemistry and Physics (Chemical Rubber, Cleveland, Ohio, 1962), 44th ed., p. 1234.
8.
N. K. Adam, The Physics and Chemistry of Surfaces (Dover, New York, 1968), p. 180.
9.
H.
Lomas
,
J. Coll. Interface Sci.
33
,
548
(
1970
).
10.
P. J. Firnett and B. A. Troesch, Lecture Notes in Mathematics (Springer‐Verlag, Berlin, 1974), Vol. 362, p. 408.
This content is only available via PDF.
You do not currently have access to this content.