A disk rotating in a viscous fluid decelerates with an angular velocity inversely proportional to time. It is found that the unsteady Navier–Stokes equations admit similarity solutions which depend on a nondimensional parameter S =α/Ω0, measuring unsteadiness. The resulting set of nonlinear ordinary differential equations is then integrated numerically. The special case of S =−1.606 699 corresponds to the decay of rotation of a free, massless disk in a viscous fluid.

1.
R. Berker, in Encyclopedia of Physics (Springer, Verlag, Berlin, 1963), Vol. 8, No. 2.
2.
C. Y.
Wang
,
J. Appl. Mech.
33
,
696
(
1966
).
3.
K. T.
Yang
,
J. Appl. Mech.
25
,
421
(
1958
).
4.
C. Y.
Wang
,
J. Appl. Mech.
98
,
579
(
1976
).
5.
S.
Uchida
and
H.
Aoki
,
J. Fluid Mech.
82
,
371
(
1977
).
6.
T.
von Kárman
,
Z. Angew. Math. Mech.
1
,
233
(
1921
).
7.
K. M.
Brown
and
J. E.
Dennis
,
Numerische Math.
18
,
289
(
1972
).
8.
W. G.
Cochran
,
Proc. Camb. Phil. Soc.
30
,
365
(
1934
).
9.
E. R.
Benton
,
J. Fluid Mech.
24
,
781
(
1966
).
10.
H. K.
Thiriot
,
Z. Angew. Math. Mech.
20
,
1
(
1940
).
11.
S. S.
Chawla
,
J. Fluid Mech.
78
,
609
(
1976
).
This content is only available via PDF.
You do not currently have access to this content.