A study of surface wave trapping by typical islands of small seabed slope is reported. A new formulation is proposed which includes all the established approximations, but also permits treatment of trapping with energy leakage and complex eigenfrequencies. On this basis, we prove existence of eigenvalues with very small leakage and correspondingly large response to excitation by incident waves. Indeed, certain types of trapped wave modes have exponentiallysmall leakage and therefore, a violently resonant character. Two physical effects are found to promote such resonance: It is typical of waves that bear a close local resemblance to coastal edge waves. It also occurs for waves of large radial wavenumber component. Both effects can combine to produce especially strong resonance. The strongly resonant wave modes have a structure more complicated than is commonly considered important, but still clear‐cut enough to permit characterization by an eigenvalue problem for an ordinary differential equation. It has three relevant transition points, and extant theory for it is in effect only of first order. However, careful attention to energy conservation makes it possible to extract exponential precision for the imaginary part of the eigenvalues.

1.
K.
Kajiura
,
International Union of Geodesy and Geophysics Monograph
24
,
206
(
1961
).
2.
W. H. Munk, in Long Ocean Waves inThe Sea,” edited by M. N. Hill (Wiley, New York, 1962), Vol. I, p. 647.
3.
W. G. Van Dorn, in Advances in Hydro science, edited by V. T. Chow (Academic, New York, 1965), Vol. II, p. 1.
4.
F.
Ursell
,
Proc. Cambridge Philos. Soc.
47
,
347
(
1951
).
5.
F.
Ursell
,
Proc. R. Soc. London Ser. A
214
,
79
(
1952
).
6.
A. J.
Bowen
,
J. Geophys. Res.
74
,
5467
(
1969
).
7.
P. D.
Komar
and
D. L.
Inman
,
J. Geophys. Res.
75
,
5914
(
1970
).
8.
A. J.
Bowen
and
D. L.
Inman
,
J. Geophys. Res.
76
,
8662
(
1971
).
9.
P. D.
Komar
,
Geol. Soc. Am. Bull.
82
,
2643
(
1971
).
10.
M. S.
Longuet‐Higgins
,
J. Fluid Mech.
29
,
781
(
1967
).
11.
M. C.
Shen
,
R. E.
Meyer
, and
J. B.
Keller
,
Phys. Fluids
11
,
2289
(
1968
).
12.
C. C.
Lautenbacher
,
J. Fluid Mech.
41
,
655
(
1970
).
13.
J. B.
Keller
,
J. Fluid Mech.
4
,
607
(
1958
).
14.
J. B.
Keller
and
S. I.
Rubinow
,
Ann. Phys. (N.Y.)
9
,
24
(
1960
).
15.
R. E. Meyer, in Lectures in Applied Mathematics (American Mathematical Society, Providence, R.I., 1971), Vol. 13, p. 189.
16.
M. C.
Shen
and
J. B.
Keller
,
SIAM J. Appl. Math.
28
,
857
(
1975
).
17.
J. J. Stoker, Water Waves (Interscience, New York, 1957), pp. 19, 40, 48, and 419.
18.
V. S.
Buslaev
,
Trudy Mat. Inst. Akad. Nauk SSSR
73
,
14
(
1964
);
R.
Grimshaw
,
Commun. Pure Appl. Math.
19
,
167
(
1966
);
C. S.
Morawetz
and
D.
Ludwig
,
Commun. Pure Appl. Math.
21
,
187
(
1968
).
19.
J. B.
Keller
,
J. Opt. Soc. Am.
52
,
116
(
1962
).
20.
J. J. Mahony, J. Barnard, and W. G. Pritchard, Proc. R. Soc. Ser. A (to be published).
21.
L. S. Hwang, S. Fersht, and B. LeMehaute, in Proceedings of the Thirteenth Congress of the International Association of Hydraulic Research (Japan Society of Civil Engineers, Tokyo, Japan, 1969), Vol. 3, p. 131.
22.
K. O.
Friedrichs
,
Commun. Pure Appl. Math.
1
,
109
(
1948
).
23.
C. J.
Eckart
,
J. Marine Res.
9
,
139
(
1952
).
24.
F. W. J. Oliver, Asymptotics and Special Functions (Academic, New York, 1974), p. 518, Chaps. 6, and 10–13.
25.
M. A.
Evgrafov
and
M. V.
Fedoryuk
,
Usp. Mat. Nauk
21
,
3
(
1966
)
[
M. A.
Evgrafov
and
M. V.
Fedoryuk
,
Russ. Math. Surv.
21
,
1
(
1966
)].
26.
G. F.
Carrier
and
H. P.
Greenspan
,
J. Fluid Mech.
4
,
97
(
1958
).
27.
A. S.
Peters
,
Commun. Pure Appl. Math.
5
,
87
(
1952
);
M. Roseau, Publ. Sci. Tech. Minist. Air No. 275 (1952).
28.
R. E.
Langer
,
Trans. Am. Math. Soc.
33
,
23
(
1931
);
R. E.
Langer
,
34
,
447
(
1932
).,
Trans. Am. Math. Soc.
This content is only available via PDF.
You do not currently have access to this content.