Expressions are derived for the full bounce period and second adiabatic invariant of a charged particle trapped in a geometric mirror (which confines plasma by means of a magnetic surface layer). Field‐free regions of double‐conical and ellipsoidal shape are treated explicitly as special cases.

1.
T. K.
Samec
,
Y. C.
Lee
, and
B. D.
Fried
,
Phys. Rev. Lett.
35
,
1763
(
1975
).
2.
A. Y.
Wong
,
Y.
Nakamura
,
B. H.
Quon
, and
J. M.
Dawson
,
Phys. Rev. Lett.
35
,
1156
(
1975
);
E. S.
Weibel
and
M. W.
Tran
,
Phys. Lett. A
51
,
71
(
1975
);
A.
Lamm
,
N.
Hershkowitz
, and
K. N.
Leung
,
Bull. Am. Phys. Soc.
20
,
1243
(
1975
).
3.
H. Alfvén, Cosmical Electrodynamics (Oxford University, London, 1950);
T. G. Northrop, The Adiabatic Motion of Charged Particles (Wiley, New York, 1963).
4.
I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, New York, 1965), pp. 627, 905; 998, 999, 1006.
5.
M.
Schulz
,
J. Geophys. Res.
76
,
3144
(
1971
).
6.
W. M.
MacDonald
and
M.
Walt
,
Ann. Phys. (N.Y.)
15
,
44
(
1961
).
7.
L. R.
Lyons
,
R. M.
Thorne
, and
C. F.
Kennel
,
J. Geophys. Res.
77
,
3455
(
1972
).
8.
C. F.
Kennel
,
Rev. Geophys.
7
,
379
(
1969
).
This content is only available via PDF.
You do not currently have access to this content.