Vacuum transport of dense, charged particle beams is investigated as an alternative to plasma neutralization of the beam, which may produce relatively large beam‐plasma interaction losses. A solution of the vacuum transport equations, with beam properties invariant in the direction of propagation and without the aid of a magnetic guide field is found and interpreted. The energy required to provide favorable boundary conditions for eliminating beam divergence is shown to be acceptable.
REFERENCES
1.
2.
3.
4.
5.
V. M.
Lagunov
, A. G.
Ponomarenko
, and L. P.
Fominiskii
, Zh. Tekh. Fiz.
42
, 1947
(1972
)[
V. M.
Lagunov
, A. G.
Ponomarenko
, and L. P.
Fominiskii
, Sov. Phys.‐Tech. Phys.
17
, 1560
(1973
)].6.
7.
8.
9.
G.
Yonas
, K. R.
Prestwich
, J. W.
Poukey
, and J. R.
Freeman
, Nucl. Fusion
14
, 731
(1974
).10.
11.
12.
13.
G.
Benford
, D. L.
Book
, and R. N.
Sudan
, Phys. Fluids
13
, 2621
(1970
).14.
15.
L. S.
Bogdankevich
and A. A.
Rukhadze
, Usp. Fiz. Nauk.
103
, 609
(1971
)[
L. S.
Bogdankevich
and A. A.
Rukhadze
, Sov. Phys.‐Usp.
14
, 163
(1971
)].16.
17.
J. W.
Poukey
, A. J.
Toepfer
, and J. G.
Kelly
, Phys. Rev. Lett.
26
, 1620
(1971
).18.
19.
20.
21.
22.
M.
Andrews
, J.
Bzura
, H. H.
Fleischmann
, and N.
Rostoker
, Phys. Fluids
13
, 1322
(1970
).23.
24.
C. S.
Stallings
, S.
Shope
, and J.
Guillory
, Phys. Rev. Lett.
28
, 653
(1972
).25.
G. P.
Mkheidze
, V. I.
Pulin
, M. D.
Razier
, and L. E.
Tsopp
, Zh. Eksp. Teor. Fiz.
63
, 104
(1972
)[
G. P.
Mkheidze
, V. I.
Pulin
, M. D.
Razier
, and L. E.
Tsopp
, Sov. Phys.‐JETP
36
, 54
(1973
)].26.
27.
28.
G. Benford and D. L. Book, in Advances in Plasma Physics, edited by A. Simon and W. B. Thompson (Wiley, New York, 1971), Vol. 4, p. 125.
29.
30.
31.
32.
33.
M.
Friedman
and I. M.
Vitkovitsky
, Appl. Phys. Lett.
25
, 259
(1974
).
This content is only available via PDF.
© 1976 American Institute of Physics.
1976
American Institute of Physics
You do not currently have access to this content.