A formulation of plasma turbulence theory is developed which is based on the concept of the response function of the turbulent system to an infinitesimal, localized external perturbation. This infinitesimal response function describes the normal modes of the turbulent system. The theory is developed as an expansion in powers of the assumed small ratio of the incoherent wave energy to the particle kinetic energy. It is also assumed that while the wave fluctuations are weakly correlated, strong coherent fields may also be present which make the system arbitrarily nonstationary in time and inhomogenous in space. The equations of the system are therefore developed in physical space and time rather than in Fourier space. The first two orders of iteration are carried out to obtain the space–time analogs of all the familiar weak turbulence processes.

1.
B. B. Kadomtsev, Plasma Turbulence (Academic, New York, 1965).
2.
R. Z. Sagdeev and A. A. Galeev, Lectures on Nonlinear Plasma Theory (Benjamin, New York, 1969).
3.
V. N. Tsytovich, Nonlinear Effects in Plasmas (Plenum, New York, 1970).
4.
D. F.
DuBois
and
M. V.
Goldman
,
Phys. Rev. Lett.
14
,
544
(
1965
);
D. F.
DuBois
and
M. V.
Goldman
, and
Phys. Rev.
164
,
207
(
1967
);
V. P.
Silin
,
Zh. Eksp. Teor. Fiz.
47
,
1977
(
1965
)
[
V. P.
Silin
,
Sov. Phys—JETP
21
,
1127
(
1965
)].
5.
M. V.
Goldman
,
Ann. Phys. (N.Y.)
38
,
95
(
1966
). The treatment given of the linear theory of parametric instabilities in this reference uses techniques similar to those of the present paper.
6.
D. F. DuBois and B. Bezzerides, Phys. Rev. A (to be published).
7.
A. A.
Vedenov
,
A. V.
Gordeev
, and
L. I.
Rudakov
,
Plasma Phys.
9
,
719
(
1967
).
8.
W. L.
Kruer
,
P. K.
Kaw
,
J. M.
Dawson
, and
C. A.
Oberman
,
Phys. Rev. Lett.
24
,
987
(
1970
).
9.
E. J.
Valeo
and
W. I.
Kruer
,
Phys. Rev. Lett.
33
,
750
(
1974
).
10.
D. F. DuBois, in Lectures in Theoretical Physics, edited by W. E. Brittin (Gordon and Breach, New York, 1967), p. 469;
B.
Bezzerides
and
D. F.
DuBois
,
Ann. Phys. (N.Y.)
70
,
10
(
1972
).
11.
Functional derivatives are familiar in the Hamilton formulation of electrodynamics or hydrodynamics, e.g., W. K. H. Panofsky and M. Phillips, Classical Electricity and Magnetism (Addison‐Wesley, Cambridge, Mass. 1955), Chap. 25; see also Ref. 10.
12.
Y. L. Klimontovich, The Statistical Theory of Nonequilibrium Processes in a Plasma (MIT Press, Cambridge, Mass., 1967).
13.
T. H.
Dupree
,
Phys. Fluids
9
,
1773
(
1966
);
T. H.
Dupree
,
10
,
1949
(
1967
).,
Phys. Fluids
This content is only available via PDF.
You do not currently have access to this content.