A model has been constructed to analyze the gross beam‐plasma interaction in a laser solenoid plasma. The model includes a simple solution for a slab plasma response to a given laser beam, and a solution for axial beam size variations in response to arbitrary axial plasma structure. The two solutions are combined to determine the coupled behavior. Trapping of the focused laser beam where it enters the plasma is a significant problem, but can be achieved by a minimum level of imbedded field in the plasma. If the beam is trapped, it first focuses and then defocuses near the front of the bleaching wave (front of the laser heated plasma). In order to avoid divergence of the beam near the front, it is essential to have a pre‐formed favorable density profile in the plasma. Such a condition is probably achieved automatically in the early stages of plasma heating. Several techniques are discussed which can be used to avert unfavorable refractive behavior (catastrophic self‐focusing and defocusing).

1.
J. M. Dawson, A. Hertzberg, G. C. Vlases, H. G. Ahlstrom, L. C. Steinhauer, R. E. Kidder, and W. L. Kruer, in Proceedings of the Esfahan Symposium on Fundamental and Applied Laser Physics, edited by M. S. Feld, A. Javan, and N. A. Kurnit (Wiley, New York, 1973), p. 119;
and L. C. Steinhauer, G. C. Vlases, R. T. Taussig, A. L. Hoffman, P. H. Rose, H. J. Willenberg, D. C. Quimby, and G. L. Woodruff, Electric Power Research Institute Report ER‐171 (1976).
2.
L. C.
Steinhauer
and
H. G.
Ahlstrom
,
Phys. Fluids
14
,
1109
(
1971
).
3.
L. C. Steinhauer, Ph.D. thesis, University of Washington (1970), p. 148.
4.
R.
Turner
and
T. O.
Poehler
,
Phys. Fluids
13
,
1072
(
1970
).
5.
N. A. Amherd and G. C. Vlases, in Proceedings of the Second Topical Conference on High Beta Plasmas, edited by W. Lotz (Institute for Plasma Physics, Max‐Planck Institute, Garching West Germany, 1972), Paper G4,
see also
N. A.
Amherd
and
G. C.
Vlases
,
Appl. Phys. Lett.
24
,
93
(
1974
).
6.
A. L.
Hoffman
,
Appl. Phys. Lett.
23
,
693
(
1973
).
7.
A. L.
Hoffman
,
Bull. Am. Phys. Soc.
19
,
933
(
1974
).
8.
N. G.
Loter
,
G. J.
Raff
,
D. R.
Cohn
, and
W.
Halverson
,
J. Appl. Phys.
45
,
97
(
1974
);
W.
Halverson
,
Appl. Phys. Lett.
24
,
364
(
1974
);
W.
Halverson
,
D. R.
Cohn
, and
B.
Lax
,
Bull. Am. Phys. Soc.
19
,
933
(
1974
).
9.
G. M.
Molen
,
M.
Kristiansen
,
M. O.
Hagler
, and
R. D.
Bengtson
,
Appl. Phys. Lett.
24
,
383
(
1974
).
10.
L. C.
Johnson
and
T. K.
Chu
,
Phys. Rev. Lett.
32
,
517
(
1974
);
T. K.
Chu
and
L. C.
Johnson
,
Phys. Fluids
18
,
1460
(
1975
).
11.
A. A.
Offenberger
,
M. R.
Cervenan
, and
P. R.
Smy
,
J. Appl. Phys.
47
,
494
(
1976
).
12.
H. L.
Rutkowski
,
H. W.
Hoida
, and
Z. A.
Pietrzyk
,
Bull. Am. Phys. Soc.
19
,
933
(
1974
);
H. L.
Rutkowski
,
D. W.
Scudder
,
Z. A.
Pietrzyk
, and
G. C.
Vlases
,
Appl. Phys. Lett.
26
,
421
(
1975
).
13.
S.
Humphries
, Jr.
,
Plasma Phys.
16
,
623
(
1974
).
14.
S. A.
Mani
,
J. E.
Eninger
, and
J.
Wallace
,
Nucl. Fusion
15
,
371
(
1975
).
15.
P. K.
Tien
,
J. P.
Gordon
, and
J. R.
Whinnery
,
Proc. IEEE
53
,
129
(
1965
).
16.
M. D.
Feit
and
D. E.
Maiden
,
Appl. Phys. Lett.
28
,
331
(
1976
).
17.
J. M. Chapman, J. Kevorkian, L. C. Steinhauer, and J. Vagners, University of Washington, Department of Aeronautics Astronautics Report 75‐1 (1975).
18.
C. S. Chung, M.S. thesis, University of Washington (1973).
19.
N. H.
Burnett
and
A. A.
Offenberger
,
J. Appl. Phys.
45
,
2155
(
1974
).
20.
D. L.
Chapin
and
J. J.
Duderstadt
,
Phys. Fluids
18
,
325
(
1975
).
21.
H. A.
Bethe
and
G. C.
Vlases
,
Phys. Fluids
18
,
982
(
1975
).
22.
L. C.
Steinhauer
,
J. Appl. Phys.
46
,
4747
(
1975
).
23.
M. D.
Feit
and
J. A.
Fleck
, Jr.
,
Bull. Am. Phys. Soc.
19
,
962
(
1974
);
M. D.
Feit
and
J. A.
Fleck
, Jr.
,
Appl. Phys. Lett.
28
,
121
(
1976
).
24.
R. G.
Rehm
,
Phys. Fluids
13
,
919
(
1970
).
25.
L. C.
Steinhauer
and
H. G.
Ahlstrom
,
Phys. Fluids
14
,
81
(
1971
);
L. C.
Steinhauer
and
H. G.
Ahlstrom
,
AIAA J.
10
,
429
(
1972
);
L. C.
Steinhauer
and
H. G.
Ahlstrom
, and
Astronaut. Acta
17
,
751
(
1972
).
26.
L. C.
Steinhauer
and
H. G.
Ahlstrom
,
Phys. Fluids
18
,
541
(
1975
).
27.
S. Y.
Yuen
,
B.
Lax
, and
D. R.
Cohn
,
Phys. Fluids
18
,
829
(
1975
).
28.
L. C.
Steinhauer
,
Phys. Fluids
18
,
1131
(
1975
).
29.
M. Kline and I. W. Kay, Electromagnetic Theory and Geometrical Optics (Wiley, New York, 1965), p. 70.
30.
J. D. Cole, Perturbation Methods in Applied Mathematics (Blaisdell, Waltham, Mass., 1968), Chap. 3.
31.
J.
Kevorkian
,
SIAM J. Appl. Math.
20
,
364
(
1971
).
32.
P.
Kaw
,
G.
Schmidt
, and
T.
Wilcox
,
Phys. Fluids
16
,
1522
(
1973
).
33.
T. W.
Johnston
and
J. M.
Dawson
,
Phys. Fluids
16
,
722
(
1973
).
34.
L. Spitzer, Jr., Physics of Fully Ionized Gases (Wiley, New York, 1962), p. 145.
35.
L. C. Steinhauer (to be published).
36.
L. C. Steinhauer and G. C. Vlases (to be published).
37.
G. C.
Vlases
,
Phys. Fluids
14
,
1287
(
1971
).
This content is only available via PDF.
You do not currently have access to this content.