The burst frequency or frequency of regions in a turbulent flow where the energy dissipation is large has been measured in both laboratory and atmospheric shear flows. The laboratory measurements were made in two slightly heated flows, a boundary layer in zero pressure gradient and an axisymmetric jet with a co‐flowing external system. The atmospheric data were obtained in the first few meters above a wheat canopy. For the laboratory data, the burst frequency, as determined from either velocity or temperature signals, is found to be approximately equal to one half the zero crossing frequency of these signals. In the atmosphere, the burst frequency is very roughly twice the zero crossing frequency. The burst intermittency factor and the ratio of the burst width to Kolgomoroff length scale are found to be very weakly dependent on the Reynolds number. Available data in the literature on the intermittency factor and width of bursts exhibit extensive scatter and conflicting Reynolds number trends.

1.
H. T.
Kim
,
S. J.
Kline
, and
W. C.
Reynolds
,
J. Fluid Mech.
50
,
133
(
1971
).
2.
E. R.
Corino
and
R. S.
Brodkey
,
J. Fluid Mech.
37
,
1
(
1969
).
3.
G. R.
Offen
and
S. J.
Kline
,
J. Fluid Mech.
62
,
223
(
1974
).
4.
G. R.
Offen
and
S. J.
Kline
,
J. Fluid Mech.
70
,
209
(
1975
).
5.
K.
Narahari Rao
,
R.
Narasimha
, and
M. A.
Badri Narayanan
,
J. Fluid Mech.
48
,
339
(
1971
).
6.
A. Y. S.
Kuo
and
S.
Corrsin
,
J. Fluid Mech.
50
,
285
(
1971
).
7.
M. A. Badri Narayanan, R. Narasimha, and K. Narahari Rao, in Proceedings of Fourth Australasian Conference on Hydraulics and Fluid Mechanics (Monash University, Melbourne Australia, 1971), p. 73.
8.
R. F.
Blackwelder
and
H. H. W.
Woo
,
Phys. Fluids
17
,
515
(
1974
).
9.
M. A. Badri Narayanan, S. Rajagopalan, and R. Narasimha (to be published).
10.
R. A.
Antonia
,
A.
Prabhu
, and
S. E.
Stephenson
,
J. Fluid Mech.
72
,
455
(
1975
).
11.
R. A. Antonia, H. Q. Danh, and A. Prabhu, Department of Mechanical Engineering, University of Sydney, Charles Rolling Research Laboratory Technical Note F‐74 (1975).
12.
R. A.
Antonia
and
J. D.
Atkinson
,
J. Fluid Mech.
64
,
779
(
1974
).
13.
V.
Kibens
,
L. S. G.
Kovasznay
, and
L. J.
Oswald
,
Rev. Sci. Instrum.
45
,
1049
(
1974
).
14.
S. Corrsin and A. L. Kistler, NACA Report 1244 (1955).
15.
S. O. Rice, in Selected Papers on Noise and Stochastic Processes, edited by N. Wax (Dover, New York, 1954), p. 133.
16.
I.
Wygnanski
and
H. E.
Fiedler
,
J. Fluid Mech.
38
,
577
(
1969
).
17.
J. H.
Strickland
and
R. L.
Simpson
,
Phys. Fluids
18
,
306
(
1975
).
18.
L. Fulachier, Thèse Docteur es Sciences, Université de Provence (1972).
19.
P. S. Klebanoff, NACA Report 1247 (1955).
20.
R. A. Antonia, Ph.D. thesis, University of Sydney (1969).
21.
H.
Ueda
and
J. O.
Hinze
,
J. Fluid Mech.
67
,
125
(
1975
).
22.
Z. Zaric, in Turbulent Diffusion in Environmental Pollution, edited by F. N. Frenkiel and R. E. Munn [Advances in Geophysics (Academic, New York, 1974)], Vol. 18A, p. 249.
23.
S. S.
Lu
and
W. W.
Willmarth
,
J. Fluid Mech.
60
,
481
(
1973
).
24.
S. S.
Lu
and
W. W.
Willmarth
,
Phys. Fluids
16
,
2012
(
1973
).
25.
W. W.
Willmarth
and
B. J.
Tu
,
Phys. Fluids Suppl.
10
,
S134
(
1967
).
26.
J.
Laufer
and
M. A. Badri
Narayanan
,
Phys. Fluids
14
,
183
(
1971
).
27.
C. M.
Gordon
,
Phys. Fluids
18
,
141
(
1975
).
28.
C. M.
Gordon
and
C. F.
Dohne
,
J. Geophys. Res.
78
,
1971
(
1973
).
This content is only available via PDF.
You do not currently have access to this content.