The evolution and interaction of nonlinear wavepackets on deep water is studied both theoretically and experimentally. The nonlinear Schrödinger equation, first derived in this context by Hasimoto and Ono, is shown to be a special case of Whitham’s theory. The exact solution to this equation predicts the existence of stable envelope solitons, which is indeed verified by laboratory experiments. A comparison between laboratory data and a numerical solution of the nonlinear Schrödinger equation is also given.

1.
M. J.
Lighthill
,
J. Inst. Math. Appl.
1
,
269
(
1965
);
M. J.
Lighthill
,
Proc. R. Soc. A
299
,
28
(
1967
).
2.
W. D.
Hayes
,
Proc. R. Soc. A
320
,
187
(
1970
);
W. D.
Hayes
,
320
,
209
(
1970
);
W. D.
Hayes
,
338
,
101
(
1974
).
3.
G. B.
Whitham
,
Proc. R. Soc. A
283
,
238
(
1965
);
G. B.
Whitham
,
J. Fluid Mech.
22
,
273
(
1965
);
G. B.
Whitham
,
J. Fluid Mech.
27
,
339
(
1967
);
G. B.
Whitham
,
Proc. R. Soc. A
299
,
6
(
1967
);
G. B.
Whitham
,
J. Fluid Mech.
44
,
373
(
1970
).
4.
V. H.
Chu
and
C. C.
Mei
,
J. Fluid Mech.
41
,
873
(
1970
);
V. H.
Chu
and
C. C.
Mei
,
J. Fluid Mech.
47
,
337
(
1971
).
5.
H.
Hasimoto
and
H.
Ono
,
J. Phys. Soc. Jap.
33
,
805
(
1972
).
6.
A.
Davey
and
K.
Stewartson
,
Proc. R. Soc. A
338
,
101
(
1974
).
7.
V. E.
Zakharov
and
A. B.
Shabat
,
Zh. Eksp. Teor. Fiz.
61
,
118
(
1971
)
[
V. E.
Zakharov
and
A. B.
Shabat
,
Sov. Phys.‐JETP
34
,
62
(
1972
)].
8.
J. C.
Luke
,
J. Fluid Mech.
27
,
395
(
1967
).
9.
D. J.
Benney
and
A. C.
Newell
,
J. Math. Phys.
46
,
133
(
1967
).
10.
H.
Segur
,
J. Fluid Mech.
59
,
721
(
1973
);
J. L.
Hammack
and
H.
Segur
J. Fluid Mech.
65
,
289
(
1974
).,
J. Fluid Mech.
11.
J.
Lewis
,
B. M.
Lake
, and
D. R. S.
Ko
,
J. Fluid Mech.
63
,
773
(
1974
).
12.
J. E.
Feir
,
Proc. R. Soc. A
299
,
54
(
1967
).
13.
M.
Oikawa
and
N.
Yajima
,
J. Phys. Soc. Jap.
37
,
486
(
1974
).
This content is only available via PDF.
You do not currently have access to this content.