The field near the resonance cone for frequencies near the lower hybrid frequency is considered. By including higher‐order thermal terms, the proper nonsingular fields near the resonance cones due to a localized rf source at the plasma boundary are derived.

1.
W. M.
Hooke
and
S.
Bernabei
,
Phys. Rev. Lett.
28
,
407
(
1972
).
2.
V. M.
Glagolev
,
J. Plasma Phys.
14
,
301
(
1972
).
3.
S.
Puri
and
M.
Tutter
,
Nucl. Fusion
14
,
93
(
1974
).
4.
P.
Bellan
and
M.
Porkolab
,
Phys. Rev. Lett.
34
,
124
(
1975
).
5.
R. J.
Briggs
and
R. R.
Parker
,
Phys. Rev. Lett.
29
,
852
(
1972
).
6.
H. H.
Kuehl
,
Phys. Fluids
5
,
1095
(
1962
).
7.
R. K.
Fisher
and
R. W.
Gould
,
Phys. Rev. Lett.
22
,
1093
(
1969
).
8.
R. K.
Fisher
and
R. W.
Gould
,
Phys. Fluids
14
,
857
(
1971
).
9.
M. D. Simonutti, Ph.D. dissertation, Massachusetts Institute of Technology (1974).
10.
P. M.
Bellan
and
M.
Porkolab
,
Phys. Fluids
17
,
1592
(
1974
).
11.
H. A. Antosiewicz in Handbook of Mathematical Functions, edited by M. Abramowitz and I. A. Stegun, National Bureau of Standards Applied Mathematics Series No. 55 (U.S. GPO, Washington, D.C., 1964), p. 446.
12.
H. Bateman, Higher Transcendental Functions (McGraw‐Hill, New York, 1953), Vol. II, p. 1115.
13.
K. H. Burrell, Ph.D. dissertation, California Institute of Technology (1974).
This content is only available via PDF.
You do not currently have access to this content.