The two‐term truncated three‐dimensional Wiener‐Hermite expansion is applied to the study of the inertial subrange energy spectrum of a homogeneous isotropic turbulence. It is found that this expansion, up to the second term, will predict Kolmogoroff's inverse five‐thirds law if the relaxation time is modified according to Kolmogoroff's second hypothesis. It is found that in the inertial subrange the energy spectrum of the non‐Gaussian part is much smaller than that of the Gaussian part.

1.
W. C.
Meecham
and
A.
Siegel
,
Phys. Fluids
7
,
1178
(
1964
).
2.
S. C.
Crow
and
G. H.
Canavan
,
J. Fluid Mech.
41
,
387
(
1970
).
3.
S. A.
Orszag
and
L. R.
Bissonnette
,
Phys. Fluids
10
,
2603
(
1967
).
4.
G. K. Batchelor, The Theory of Homogeneous Turbulence (Cambridge U.P., Cambridge, 1956), p. 170.
5.
N. Wiener, Nonlinear Problems in Random Theory (M.I.T. Press, Cambridge, Mass., 1958), Lectures 1–4.
6.
J. C. T. Wang, Ph.D. dissertation, Purdue University (1972).
7.
W. C.
Meecham
and
D. T.
Jeng
,
J. Fluid Mech.
32
,
225
(
1968
).
8.
R. H.
Kraichnan
,
J. Fluid Mech.
5
,
497
(
1959
).
9.
J. O. Hinze, Turbulence (McGraw‐Hill, New York, 1959), p. 184.
10.
S. F.
Edwards
and
W. D.
McComb
,
J. Phys. A
3
,
157
(
1969
).
11.
S. A.
Orszag
,
J. Fluid Mech.
41
,
363
(
1970
).
12.
W.
Heisenberg
,
Z. Phys.
124
,
628
(
1948
).
13.
L.
Proudman
,
Proc. Camb. Philos. Soc.
47
,
158
(
1951
).
14.
We would like to thank the referee who brought this point to our attention.
This content is only available via PDF.
You do not currently have access to this content.