Three types of collisionless electrostatic ion‐acoustic shocks are investigated using the University of California, Los Angeles, double plasma device: (a) laminar shocks; (b) small amplitude turbulent shocks in which the turbulence is confined to be upstream of the shock potential jump; and (c) large amplitude turbulent shocks in which the wave turbulence occurs throughout the shock transition. The wave turbulence is generated by ions which are reflected from the shock potential; linear theory spatial growth increments agree with experimental values. The experimental relationship between the shock Mach number and the shock potential is shown to be inconsistent with theoretical shock models which assume that the electrons are isothermal. Theoretical calculations which assume a trapped electron equation of a state and a turbulently flattened velocity distribution function for the reflected ions yields a Mach number vs potential relationship in agreement with experiment.

1.
S. S.
Moiseev
and
R. Z.
Sagdeev
,
J. Nucl. Energy C
5
,
43
(
1963
);
R. Z. Sagdeev, in Reviews of Plasma Physics, edited by M. A. Leontovich (Consultants Bureau, New York, 1966), Vol. 4, p. 23.
2.
G.
Bardotti
and
S. E.
Segre
,
Plasma Phys.
12
,
247
(
1970
).
3.
D.
Montgomery
,
Phys. Rev. Lett.
19
,
1465
(
1967
).
4.
D.
Montgomery
and
G.
Joyce
,
J. Plasma Phys.
3
,
1
(
1969
).
5.
I. B.
Bernstein
,
J. M.
Greene
, and
M. D.
Kruskal
,
Phys. Rev.
108
,
546
(
1957
).
6.
D. W.
Forslund
and
J. P.
Freidberg
,
Phys. Rev. Lett.
27
,
1189
(
1971
).
7.
D. W.
Forslund
and
C. R.
Shonk
,
Phys. Rev. Lett.
25
,
1699
(
1970
).
8.
D. A.
Tidman
,
Phys. Fluids
10
,
547
(
1967
).
9.
R. J.
Taylor
,
D. R.
Baker
, and
H.
Ikezi
,
Phys. Rev. Lett.
24
,
206
(
1970
).
10.
A. Y.
Wong
and
R. W.
Means
,
Phys. Rev. Lett.
27
,
973
(
1971
);
R. W.
Means
and
A. Y.
Wong
,
Bull. Am. Phys. Soc.
15
,
1409
(
1970
).
11.
R. A.
Stern
and
J. F.
Decker
,
Phys. Rev. Lett.
27
,
1266
(
1971
).
12.
J. W. M.
Paul
,
D. D. R.
Summers
, and
E. L.
Murray
,
Bull. Am. Phys. Soc.
16
,
1191
(
1971
);
P. E.
Phillips
and
A. E.
Robson
,
Phys. Rev. Lett.
20
,
154
(
1972
);
I. M. Podgorny, Y. V. Andrianov, and E. M. Dubinin, presented at the XV Meeting of COSPAR, Madrid, Spain (1972).
13.
A. E. Robson, Collision‐Free Shocks in the Laboratory and Space (European Space Research Organization, Frascati, Italy, 1969), p. 159.
14.
R. J. Taylor, Ph.D. thesis, University of California, Los Angeles, 1970.
15.
D. B.
Cohn
and
K.
MacKenzie
,
Phys. Rev. Lett.
28
,
656
(
1972
).
16.
The Mach number of this shock wave was erroneously published as 1.05 in Ref. 10. The correct Mach number is 1.2.
17.
R. J.
Taylor
and
F. V.
Coroniti
,
Phys. Rev. Lett.
29
,
34
(
1972
).
18.
P. H.
Sakanaka
,
Phys. Fluids
15
,
304
(
1972
);
P. H.
Sakanaka
,
C. K.
Chu
, and
T. C.
Marshall
,
Phys. Fluids
14
,
611
(
1971
).
19.
R. J.
Mason
,
Phys. Fluids
13
,
1402
(
1970
).
20.
Turbulent structures were observed in computer simulation of a plasma with 10% light ions. D. W. Forslund (private communication).
21.
B. D.
Fried
and
A. Y.
Wong
,
Phys. Fluids
9
,
1084
(
1966
).
22.
A. Y. Wong, B. H. Quon, and B. H. Ripin, UCLA Plasma Physics Group Report PPG‐147 (1973).
23.
M. Camac, A. R. Kantrowitz, M. M. Litvak, R. M. Patrick, and H. E. Petschek, Nucl. Fusion 423 (1962).
This content is only available via PDF.
You do not currently have access to this content.