Results of precise measurements of the pressure dependence of the flow of gases through annuli of various radius ratio are presented. The data cover a range of Knudsen numbers for about 0.01 to 450. The depth of the Knudsen minimum is found to vary markedly with radius ratio and increases as the radius ratio increases. (Radius ratio is defined as the ratio of inside to outside radii). About 50% of the total change in the depth of the Kundsen minimum occurring between flat plates (radius ratio = 1.0) and capillaries (radius ratio = 0) is effected by a 13% change in radius ratio from 1.0 to 0.8711. Previously observed deviations from classical kinetic theory are verified; and, in particular, in the free‐molecule and near free‐molecule regimes, the flows are found to be lower than those predicted based on diffuse scattering of gas molecules from the annulus wall. The data are generally found to be in good agreement with flows predicted by the BGK and variational techniques presented by Berman and Maegley [Phys. Fluids 15, 772 (1972)].

1.
M.
Knudsen
,
Ann. Physik
28
,
75
(
1909
).
2.
S.
Weber
,
Kgl. Danske Videnskab. Selskab. Mat. Fys. Medd.
28
, No.
2
(
1954
).
3.
L. M.
Lund
and
A. S.
Berman
,
J. Appl. Phys.
37
,
2489
,
2496
(
1966
);
Union Carbide Corporation, Nuclear Division, Oak Ridge Gaseous Diffusion Plant, Rept. K‐1739, (1968).
4.
W. Dong, University of California Radiation Laboratory, Berkeley, California, Rept. UCRL‐3353 (1956).
5.
E. P.
Gross
and
E. A.
Jackson
,
Phys. Fluids
2
,
432
, (
1959
).
6.
C.
Cercignani
and
F.
Sernagiotto
,
Phys. Fluids
9
,
40
(
1966
).
7.
C.
Cercignani
and
A.
Daneri
,
J. Appl. Phys.
34
,
3509
(
1963
).
8.
D. R.
Willis
,
Phys. Fluids
5
,
127
(
1962
).
9.
P.
Bassanini
,
C.
Cercignani
, and
F.
Sernagiotto
,
Phys. Fluids
9
,
1174
(
1966
).
10.
W.
Gaede
,
Ann. Physik
41
,
289
(
1913
).
11.
R. E. W.
Rasmussen
,
Ann. Physik
29
,
665
(
1937
).
12.
J. A. W.
Huggill
,
Proc. Roy. Soc. (London)
A212
,
123
(
1952
).
13.
A. S. Berman and L. M. Lund, in Proceedings of the Second International Conference on the Peaceful Uses of Atomic Energy (United Nations, Geneva, 1958), Vol. 4, p. 359.
14.
D. H.
Davis
,
L. L.
Levenson
, and
N.
Milleron
,
J. Appl. Phys.
35
,
529
(
1964
).
15.
P.
Clausing
,
Ann. Physik
12
,
961
(
1932
).
16.
W. C. DeMarcus, Union Carbide Corporation, Nuclear Division, Oak Ridge Gaseous Diffusion Plant, Rept. K‐1302 (1957).
17.
A. S.
Berman
and
W. J.
Maegley
,
Phys. Fluids
15
,
772
(
1972
).
18.
J. O. Hirschfelder, C. F. Curtiss, R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954), p. 1126.
19.
A. S.
Berman
,
J. Appl. Phys.
40
,
4991
(
1969
).
20.
The 6% backscattering value was chosen on the basis of comparisons with capillary flow data. The details are found in Ref. 17.
This content is only available via PDF.
You do not currently have access to this content.