The axial rotational temperature distribution in an underexpanded nitrogen jet emitted from a sonic orifice has been investigated. The expansion is from room temperature and the gas possesses negligible vibrational energy. The observed difference between the rotational temperature measured with an electronbeam probe and the isentropic value can be described by a rotational relaxation analysis. The governing flow equations were integrated numerically by the classical fourth‐order Runge‐Kutta method. The rotational relaxation time developed by Lordi using Wang Chang and Uhlenbeck's formal kinetic theory and Parker's molecular model was employed. Both the easy and difficult energy transfer cases were investigated and the easy case was shown to underestimate nonequilibrium affects. The numerical solutions were very sensitive to the separation between the repulsive force centers, for both energy transfer cases. The rotational temperature distributions obtained in this study are in general agreement with existing experimental data for nitrogen.

1.
H. Ashkenas and F. S. Sherman, in Rarefied Gas Dynamics, edited by J. H. DeLeeuw, (Academic, New York, 1966), Vol. II, p. 84.
2.
J. B.
French
,
AIAA J.
3
,
933
(
1965
).
3.
E. P.
Muntz
,
Phys. Fluids
5
,
80
(
1962
).
4.
F.
Robben
and
L.
Talbot
,
Phys. Fluids
9
,
644
(
1966
).
5.
S. L. Petrie, in Proceedings of the 1965 Heat Transfer and Fluid Mechanics Institute, (Stanford University Press, Stanford, Calif, 1965), p. 282.
6.
P. V.
Marrone
,
Phys. Fluids
10
,
521
(
1967
).
7.
H.
Ashkenas
,
Phys. Fluids
10
,
2509
(
1967
).
8.
B. Lefkowitz and E. L. Knuth, in Rarefied Gas Dynamics, edited by L. Trilling and H. Y. Wachman (Academic, New York, 1967), Vol. 2, p. 1421.
9.
D.
Tirumalesa
,
AIAA J.
6
,
765
(
1968
).
10.
C. S. Wang Chang and G. E. Uhlenbeck, Michigan University Engineering Research Institute Report No. CM‐681 (1951).
11.
N. F.
Sather
and
J. S.
Dahler
,
J. Chem. Phys.
35
,
2029
(
1961
).
12.
J. S.
Dahler
and
N. F.
Sather
,
J. Chem. Phys.
38
,
2363
(
1963
).
13.
S. I.
Sandler
and
J. S.
Dahler
,
J. Chem. Phys.
44
,
1229
(
1966
).
14.
J. A. Lordi, Ph.D. thesis, State University of New York at Buffalo (1968).
Also
Phys. Fluids
13
,
291
(
1970
).
15.
J. G.
Parker
,
Phys. Fluids
2
,
449
(
1959
).
16.
C. A.
Brau
and
R. M.
Jonkman
,
J. Chem. Phys.
52
,
477
(
1970
).
17.
J. J. Repetski, Ph.D. dissertation, State University of New York at Buffalo (1970).
18.
E. S. Love, C. E. Grigsby, L. P. Lee, and M. J. Woodling, NASA Tr R‐6, (1959).
19.
F. S. Sherman, in Rarefied Gas Dynamics, edited by J. Laurmann (Academic, New York, 1963), Vol. 2, p. 228.
20.
P. L. Owen and C. K. Thornhill, Aeronaut. Res. Coun. Mem. No. 2616, Great Britain, (1948).
21.
D. E. Rothe (private communication).
22.
G. Emanuel and W. G. Vincenti, AEDC‐TDR 52‐131 (1962).
23.
D. R. Willis and B. B. Hamel, in Rarefied Gas Dynamics, edited by C. L. Brundin (Adademic, New York, 1967), Vol. 1, p. 837.
24.
R. S. Hickman, Southern California University Engineering Center, Report USCAE‐104 (1966).
This content is only available via PDF.
You do not currently have access to this content.