A method has been developed in order to extract the fundamental fluctuation modes in a slightly disturbed electrically and thermally conducting viscous incompressible fluid. The method, based on the linearized theory, consists in factorization of a fixed operator. The isolated modes have been studied separately by means of shifting and blurring operators. The theory shows that in the presence of an imposed magnetic field the propagation of the disturbed quantities is nonisotropic.

1.
L. S. G.
Kovasznay
,
J. Aeron. Sci.
20
,
657
(
1953
).
2.
B. T.
Chu
and
L. S. G.
Kovasznay
,
J. Fluid Mech.
3
,
494
(
1958
).
3.
M. J.
Lighthill
,
Commun. Pure Appl. Math.
20
,
267
(
1967
).
4.
J. H.
Shercliff
,
J. Fluid Mech.
9
,
481
(
1960
).
5.
J. H. Shercliff, A Textbook of Magnetohydrodynamics (Pergamon Press, Ltd., London, 1964), 1st ed., Chap. 4.
6.
L. S. G. Kovasznay, in Proceedings of the Eleventh International Congress of Applied Mechanics, H. Görtler, Ed. (Springer‐Verlag, Berlin, 1964), p. 940.
7.
E. B.
Squire
,
Proc. Roy. Soc. (London)
A142
,
621
(
1933
).
8.
A. S. Monin and A. M. Yaglom, Statistical Hydromechanics (in Russian edition “Nauka,” Physical Mathematical Literature, Moscow, 1965), Pt. I, p. 72.
9.
S. I. Pai, Introduction to the Theory of Compressible Fluid (D. Van Nostrand Company, Inc., Princeton, New Jersey, 1958), p. 370.
10.
F. H.
Clauser
,
Phys. Fluids
6
,
231
(
1963
).
11.
B. T.
Chu
,
Phys. Fluids
2
,
473
(
1959
).
12.
L. S. G.
Kovasznay
and
H. M.
Joseph
,
Proc. IRE
43
,
560
(
1955
).
This content is only available via PDF.
You do not currently have access to this content.