Equations for the trajectory and overpressure of the shock front of the intermediate strength blast wave (10 < Δp/p0 ⪝ 0.02) are developed for spherical, cylindrical, and plane blasts. These equations are based on the correct limit method that provided the trajectory of the blast wave from the inverse pinch to velocities below Mach number 1.16 (Δp/p0 = 0.4). The correct limit equations are an extension of the strong shock similarity solution of G. I. Taylor for the spherical blast and A. Sakurai and S. C. Lin for the cylindrical case. It is now possible, given the energy and ambient gas conditions, to trace the shock front trajectory and overpressure from the very strong through the very weak regimes. Conversely, the shock wave energy can be found from measurement of overpressure or arrival time. Comparisons with experimental data as well as the calculations of H. L. Brode verify the validity of the correct limit equations.

1.
G. I.
Taylor
,
Proc. Roy. Soc. (London)
A201
,
159
(
1950
).
2.
A.
Sakurai
,
J. Phys. Soc. Japan
8
,
662
(
1953
).
3.
S. C.
Lin
,
J. Appl. Phys.
25
,
54
(
1954
).
4.
A. T. Lewis, J. K. Oddson, and H. H. Woodson (private communication).
5.
L. I. Sedov, Similarity and Dimensional Methods in Mechanics (Academic Press Inc., New York, 1959), 4th ed., Chap. IV.
6.
A.
Sakurai
,
J. Phys. Soc. Japan
9
,
256
(
1954
).
7.
H. L.
Brode
,
J. Appl. Phys.
26
,
765
(
1955
).
8.
J.
Von Neumann
and
H.
Goldstine
,
Comun. Pure Appl. Math.
8
,
327
(
1955
).
9.
V. P.
Korobeinokov
,
C. R. Acad. Sci. URSS
109
,
271
(
1956
);
V. P.
Korobeinokov
,
111
,
557
(
1956
).,
C. R. Acad. Sci. URSS
10.
H. A. Bethe, Los Alamos Scientific Laboratory, University of California, Report AECD‐2860 ( 1944).
11.
D. L. Jones, Natl. Bur. Std. Technical Note 155 (1962), Eq. 1.
12.
Reference 11, Table 2.
13.
G. C.
Vlases
and
D. L.
Jones
,
Phys. Fluids
9
,
478
(
1966
).
14.
M. N. Plooster (private communication).
This content is only available via PDF.
You do not currently have access to this content.