A method of obtaining solutions to nonlinear flow problems by integrating the rate of change of the solution with respect to a suitable parameter is described. The advantage of this method is that the nonlinearity of the problem is confined to a first order equation where it causes little difficulty. The Falkner‐Skan boundary‐layer problem and the problem of flow about a nonlifting airfoil at transonic speeds are used to illustrate the method.

1.
H. J.
Kelley
,
ARS J.
30
,
947
(
1960
).
2.
A. E.
Bryson
and
W. F.
Denham
,
J. Appl. Mech.
29
,
247
(
1962
).
3.
R.
Bellman
and
R.
Kalaba
,
Proc. Natl. Acad. Sci. U.S.
47
,
336
(
1961
).
4.
R. Kalaba, in Nonlinear Differential Equations and Nonlinear Mechanics, J. P. LaSalle and S. Lefschetz, Eds. (Academic Press Inc., New York, 1963), p. 141.
5.
G. A.
Thurston
,
J. Appl. Mech.
32
,
383
(
1965
).
6.
D. F.
Davidenko
,
Ukr. J. Math.
5
,
196
(
1953
).
7.
D. F.
Davidenko
,
Dokl. Akad. Nauk SSSR
162
,
496
(
1965
)
[English transl.:
D. F.
Davidenko
,
Soviet Phys.—Doklady
6
,
702
(
1965
)].
8.
H. Schlichting, Boundary Layer Theory (McGraw‐Hill Book Company, Inc., New York, 1960).
9.
A. M. O. Smith, Institute of Aeronautical Science, Report No. FF‐10, (1960).
10.
J. R. Spreiter and A. Y. Alksne, NACA Report 1359 (1958).
11.
P. E. Rubbert, Ph.D. thesis, Massachusetts Institute of Technology (1965).
12.
J. D. Cole and J. Kevorkian, in Nonlinear Differential Equations and Nonlinear Mechanics, J. P. LaSalle and S. Lefschetz, Eds. (Academic Press Inc., New York, 1963), p. 113.
13.
P. E.
Rubbert
and
M. T.
Landahl
,
AIAA J.
5
,
470
(
1967
).
14.
S.
Asaka
,
J. Phys. Soc. Japan
10
,
482
,
593
(
1955
);
S.
Asaka
,
13
,
115
(
1958
).,
J. Phys. Soc. Jpn.
This content is only available via PDF.
You do not currently have access to this content.