A fully self‐consistent theory of ferromagnetic waveguide accelerators driven by a relativistic electron beam is developed. The theoretical analysis is based on Faraday’s law, which provides a second‐order partial‐differential equation of the azimuthal magnetic field, under the assumption that με≫1. Here μ and ε are the permeability and dielectric constant of the waveguide material. The azimuthal magnetic field and axial acceleration field are obtained in forms of integral equations for an arbitrary profile of the drive‐beam current I(t). In the limit when the conductivity σ of the waveguide material is zero, the acceleration mechanism is similar to the typical wake‐field accelerators. In this limit, the acceleration field is proportional to the square root of the parameter μ/ε and can be easily more than 200 MV/m for moderate system parameters. On the other hand, for high conductivity limit, the acceleration mechanism is the magnetic field decay, exhibiting that the electromagnetic fields are a decaying function of the time. With appropriate physical parameters, the acceleration gradient of the magnetic field‐decay accelerator is also very large.

1.
C. A.
Kapetanakos
and
P.
Sprangle
,
Phys. Today
38
(
2
),
58
(
1985
).
2.
P.
Chen
,
J. M.
Dawson
,
R. W.
Huff
, and
T.
Katsouleas
,
Phys. Rev. Lett.
54
,
693
(
1985
).
3.
J. B.
Rosenzweig
,
Phys. Rev. A
40
,
5249
(
1989
).
4.
J. B.
Rosenzweig
and
P.
Chen
,
Phys. Rev. D
39
,
2039
(
1989
).
5.
M. Rosing, E. Chojnaki, W. Gai, C. Ho, R. Konecny, S. Mtingwa, J. Norem, P. Schoessow, and J. Simpson, Proceedings of the 1991 IEEE Particle Accelerator Conference, San Francisco, CA (Institute of Electrical and Electronic Engineers, New York, 1991), Vol. I, p. 555.
6.
E. Chojnaki, W. Gai, P. Schoessow, and J. Simpson, in Ref. 5, Vol. IV, p. 2557, and the references therein.
7.
S. K.
Mtingwa
,
Phys. Rev. A
43
,
5581
(
1991
).
8.
H. S. Uhm, in Ref. 5, Vol. IV, p. 2556.
9.
I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, New York, 1980), Chap. 6.
10.
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, edited by M. Abramowitz and I. A. Stegun (National Bureau of Standards, Washington, DC, 1964).
11.
J.
Miller
,
R. F.
Schneider
,
D. J.
Weidman
, and
K. T.
Nguyen
,
Phys. Fluids B
4
,
4121
(
1992
).
12.
M. Prutton, Thin Ferromagnetic Films (Spottiswoode and Ballantyne, London, 1964), Chap. 6.
13.
R.
Smith
,
R. F.
Schneider
,
M. J.
Rhee
,
H. S.
Uhm
, and
W.
Namkung
,
J. Appl. Phys.
60
,
4119
(
1986
).
14.
V. K.
Neil
and
A. M.
Sessler
,
Rev. Sci. Intrum.
36
,
429
(
1965
).
15.
H. S.
Uhm
,
Phys. Fluids
25
,
690
(
1982
).
16.
E. P.
Lee
,
Part. Accel.
37&38
,
307
(
1992
).
17.
H.
Looyenga
,
Physica
31
,
401
(
1965
).
18.
R. C. Davidson, Physics of Nonneutral Plasmas (Addison-Wesley, Reading, MA, 1990), Chap. 2.
This content is only available via PDF.
You do not currently have access to this content.