The motion of an electron in a linearly polarized wiggler with an axial guide field is found to be nonintegrable. There is evidence for chaos from numerical calculations of Poincaré maps and of nonzero Lyapunov exponents. Resonances can be predicted from a one‐dimensional Hamiltonian perturbed by a small ‘‘time‐dependent’’ quantity.

1.
C.
Chen
and
R. C.
Davidson
,
Phys. Rev. A
42
,
5041
(
1990
).
2.
Y. Z.
Yin
and
G.
Bekefi
,
J. Appl. Phys.
55
,
33
(
1984
).
3.
K. D. Jacobs, Ph.D. thesis, Massachusetts Institute of Technology, 1986.
4.
T. C. Marshall, Free-Electron Lasers (Macmillan, New York, 1985).
5.
S. N. Rasband, Chaotic Dynamics of Nonlinear Systems (Wiley, New York, 1990);
G.
Benettin
,
L.
Galgani
, and
J. M.
Strelcyn
,
Phys. Rev. A
14
,
2338
(
1976
).
6.
A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion (Springer-Verlag, New York, 1983).
7.
N. M.
Kroll
,
P. L.
Morton
, and
M. N.
Rosenbluth
,
IEEE J. Quantum Electron.
QE-17
,
1436
(
1981
).
8.
B. V.
Chirikov
,
Phys. Rep.
52
,
263
(
1979
).
9.
M. Tabor, Chaos and Integrability in Nonlinear Dynamics (Wiley, New York, 1989);
G. H.
Walker
and
J.
Ford
,
Phys. Rev.
188
,
416
(
1969
).
This content is only available via PDF.
You do not currently have access to this content.