The motion of an electron in a linearly polarized wiggler with an axial guide field is found to be nonintegrable. There is evidence for chaos from numerical calculations of Poincaré maps and of nonzero Lyapunov exponents. Resonances can be predicted from a one‐dimensional Hamiltonian perturbed by a small ‘‘time‐dependent’’ quantity.
REFERENCES
1.
2.
3.
K. D. Jacobs, Ph.D. thesis, Massachusetts Institute of Technology, 1986.
4.
T. C. Marshall, Free-Electron Lasers (Macmillan, New York, 1985).
5.
S. N. Rasband, Chaotic Dynamics of Nonlinear Systems (Wiley, New York, 1990);
G.
Benettin
, L.
Galgani
, and J. M.
Strelcyn
, Phys. Rev. A
14
, 2338
(1976
).6.
A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion (Springer-Verlag, New York, 1983).
7.
N. M.
Kroll
, P. L.
Morton
, and M. N.
Rosenbluth
, IEEE J. Quantum Electron.
QE-17
, 1436
(1981
).8.
9.
M. Tabor, Chaos and Integrability in Nonlinear Dynamics (Wiley, New York, 1989);
This content is only available via PDF.
© 1993 American Institute of Physics.
1993
American Institute of Physics
You do not currently have access to this content.