Nonlinear gyrofluid equations are obtained from the gyrocenterfluid moments of the nonlinear gyrokinetic Vlasov equation, which describes an equilibrium magnetized nonuniform plasma perturbed by electromagnetic field fluctuations (δφ,δAB), whose space‐time scales satisfy the gyrokinetic ordering: ω≪Ωi, ‖k‖/k≪1, and ε≡(kρi)2≂𝒪(1). These low‐frequency (reduced) fluid equations contain terms of arbitrary order in ε and take into account the nonuniformity in the equilibrium density and temperature of the ion and electron species, as well as the nonuniformity in the equilibrium magnetic field. From the gyrofluid equations, one can systematically derive nonlinear reduced fluid equations with finite‐Larmor‐radius (FLR) corrections, which contain linear and nonlinear terms of 𝒪(ε), by expressing the gyrocenterfluid moments appearing in the gyrofluid equations in terms of the particlefluid moments, and then keeping terms up to 𝒪(ε) in the ε expansion of the gyrofluid equations. By using gyrocenter‐fluid moments, this new gyrofluid approach effectively bypasses the issue of the gyroviscous cancellations, while retaining all the important diamagnetic effects and the gyroviscous corrections. From the present FLR‐corrected reduced fluid equations, the reduced Braginskii equations are recoverd for the ion and electron species (without collisional dissipation) and the ideal reduced magnetohydrodynamic (MHD) equations (in the absence of FLR effects).

1.
W. W.
Lee
,
Phys. Fluids
26
,
556
(
1983
).
2.
R. D.
Sydora
,
J. N.
Leboeuf
,
D. R.
Thayer
,
P. H.
Diamond
, and
T.
Tajima
,
Phys. Rev. Lett.
57
,
3269
(
1986
).
3.
W. W.
Lee
,
J. Comput. Phys.
72
,
243
(
1987
).
4.
W. W.
Lee
and
W. M.
Tang
,
Phys. Fluids
31
,
612
(
1988
).
5.
R. D.
Sydora
,
T. S.
Hahm
,
W. W.
Lee
, and
J. M.
Dawson
,
Phys. Rev. Lett.
64
,
2015
(
1990
).
6.
R. D.
Sydora
,
Phys. Fluids B
2
,
1455
(
1990
).
7.
H. R.
Strauss
,
Phys. Fluids
19
,
134
(
1976
).
8.
H. R.
Strauss
,
Phys. Fluids
20
,
1354
(
1977
).
9.
H. R.
Strauss
,
Nucl. Fusion
23
,
649
(
1983
).
10.
J. A.
Holmes
,
B. A.
Carreras
,
T. C.
Hender
,
H. R.
Hicks
,
V. E.
Lynch
, and
B. F.
Masden
,
Phys. Fluids
26
,
2569
(
1983
).
11.
R.
Izzo
,
D. A.
Monticello
,
H. R.
Strauss
,
W.
Park
,
J.
Manickam
,
R. C.
Grimm
, and
J.
DeLucia
,
Phys. Fluids
26
,
3066
(
1983
).
12.
R. E.
Waltz
,
Phys. Fluids
28
,
577
(
1985
).
13.
G. S.
Lee
and
P. H.
Diamond
,
Phys. Fluids
29
,
3291
(
1986
).
14.
R. E.
Waltz
,
Phys. Fluids
29
,
3684
(
1986
).
15.
R. E.
Waltz
,
Phys. Fluids
31
,
1962
(
1988
).
16.
M.
Ottaviani
,
F.
Romanelli
,
R.
Benzi
,
M.
Briscolini
,
P.
Santangelo
, and
S.
Succi
,
Phys. Fluids B
2
,
67
(
1990
).
17.
B.-G.
Hong
and
W.
Horton
,
Phys. Fluids B
2
,
978
(
1990
).
18.
S.
Hamaguchi
and
W.
Horton
,
Plasma Phys. Controlled Fusion
31
,
203
(
1992
).
19.
W.
Horton
,
R. D.
Estes
, and
D.
Biskamp
,
Plasma Phys.
22
,
663
(
1980
).
20.
J. W.
Connor
,
Nucl. Fusion
26
,
193
(
1986
).
21.
A.
Jarmen
,
P.
Andersson
, and
J.
Weiland
,
Nucl. Fusion
27
,
941
(
1987
).
22.
H.
Nordman
and
J.
Weiland
,
Nucl. Fusion
29
,
251
(
1989
).
23.
E. A.
Frieman
and
L.
Chen
,
Phys. Fluids
25
,
502
(
1982
).
24.
D. H. E.
Dubin
,
J. A.
Krommes
,
C.
Oberman
, and
W. W.
Lee
,
Phys. Fluids
26
,
3524
(
1983
).
25.
T. S.
Hahm
,
W. W.
Lee
, and
A.
Brizard
,
Phys. Fluids
31
,
3204
(
1988
).
26.
A.
Brizard
,
J. Plasma Phys.
41
,
541
(
1989
).
27.
T. G. Northrop, The Adiabatic Motion of Charged Particles (Wiley, New York, 1963).
28.
R. G.
Littlejohn
,
J. Plasma Phys.
29
,
111
(
1983
).
29.
R.
Schmalz
,
Phys. Lett. A
82
,
14
(
1981
).
30.
A.
Hasegawa
and
M.
Wakatani
,
Phys. Fluids
26
,
2770
(
1983
).
31.
J. F.
Drake
and
T. M.
Antonsen
,
Phys. Fluids
27
,
898
(
1984
).
32.
R. D.
Hazeltine
and
J. D.
Meiss
,
Phys. Rep.
121
,
1
(
1985
).
33.
R. D.
Hazeltine
,
M.
Kotschenreuther
, and
P. J.
Morrison
,
Phys. Fluids
28
,
2466
(
1985
).
34.
C. T.
Hsu
,
R. D.
Hazeltine
, and
P. J.
Morrison
,
Phys. Fluids
29
,
1480
(
1986
).
35.
F.
Romanelli
and
F.
Zonca
,
Plasma Phys. Controlled Fusion
31
,
1365
(
1989
).
36.
P. K.
Shukla
and
J.
Weiland
,
Phys. Rev. A
40
,
341
(
1989
).
37.
W.
Horton
,
Phys. Rep.
192
,
1
(
1990
).
38.
S. I. Braginskii, in Reviews of Plasma Physics, edited by M. A. Leontovich (Consultants Bureau, New York, 1965), Vol. I, p. 205.
39.
K. V.
Roberts
and
J. B.
Taylor
,
Phys. Rev. Lett.
8
,
197
(
1962
).
40.
M. N.
Rosenbluth
and
A.
Simon
,
Phys. Fluids
8
,
1300
(
1965
).
41.
C. F.
Kennel
and
J. M.
Greene
,
Ann. Phys.
38
,
63
(
1966
).
42.
F. L.
Hinton
and
W.
Horton
,
Phys. Fluids
14
,
116
(
1971
).
43.
Z. Chang and J. D. Callen, submitted to Phys. Fluids B.
44.
G. W.
Hammett
and
F. W.
Perkins
,
Phys. Rev. Lett.
64
,
3019
(
1990
).
45.
Z. Chang, J. D. Callen, and J. Wang (private communication).
46.
G. W. Hammett and W. Dorland (private communication).
47.
R. E. Waltz, R. R. Dominguez, and G. W. Hammett (privatecommunication).
48.
J. B.
Taylor
,
Phys. Fluids
10
,
1357
(
1967
).
49.
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965).
50.
W.
Horton
,
D.-I.
Choi
, and
B.-G.
Hong
,
Phys. Fluids
26
,
1461
(
1983
).
51.
A.
Hasegawa
and
K.
Mima
,
Phys. Rev. Lett.
39
,
205
(
1977
).
This content is only available via PDF.
You do not currently have access to this content.