A theoretical model based on two coupled partial differential equations is established to describe the propagation of an intense microwave pulse in air breakdown environment. One is derived from the Poynting theorem, and the other one is the rate equation of electron density. A semiempirical formula of the ionization frequency is adopted for this model. A transformation of these two equations to local time frame of reference is introduced so that they can be solved numerically with considerably reduced computation time. This model is tested by using it to perform the computer simulation of the chamber experiments [S. P. Kuo, Y. S. Zhang, and P. Kossey, J. Appl. Phys. 67, 2762 (1990)]. The numerical results are shown to agree well with the experimental results.

1.
W. M.
Bollen
,
C. L.
Yee
,
A. W.
Ali
,
M. J.
Nagurney
, and
M. E.
Read
,
J. Appl. Phys.
54
,
101
(
1983
);
C. L.
Yee
,
A. W.
Ali
, and
W. M.
Bollen
,
J. Appl. Phys.
54
,
1278
(
1983
).,
J. Appl. Phys.
2.
J. H.
Yee
,
R. A.
Alvarez
,
D. J.
Mayhall
,
N. K.
Madsen
, and
H. S.
Cabayan
,
J. Radiat. Eff. Res. Eng.
3
,
152
(
1984
).
3.
B.
Goldstein
and
O. C.
Longmire
,
J. Radiat. Eff. Res. Eng.
3
,
1626
(
1984
).
4.
S. P.
Kuo
,
Y. S.
Zhang
, and
P.
Kossey
,
J. Appl. Phys.
67
,
2762
(
1990
).
5.
W.
Woo
and
J. S.
DeGroot
,
Phys. Fluids
27
,
475
(
1984
).
6.
J. H.
Yee
,
R. A.
Alvarez
,
D. J.
Mayhall
,
D. P.
Byrne
, and
J.
DeGroot
,
Phys. Fluids
29
,
1238
(
1986
).
7.
M. J.
Mulbrandon
,
J.
Chen
,
P. J.
Palmadesso
,
C. A.
Sullivan
, and
A. W.
Ali
,
Phys. Fluids B
1
,
2507
(
1989
).
8.
S. P.
Kuo
and
Y. S.
Zhang
,
Phys. Fluids B
2
,
667
(
1990
).
9.
Y. A.
Lupan
,
Sov. Phys. Tech. Phys.
21
,
1367
(
1976
).
10.
R. F.
Sincovec
and
N. K.
Madsen
,
ACM Trans. Math. Software
1
,
232
(
1975
).
This content is only available via PDF.
You do not currently have access to this content.