A three‐dimensional magnetohydrodynamic code has been used to study the nonlinear evolution of the tilt instability in a field‐reversed configuration. The evolution of the mode has been followed through magnetic field reconnection to complete the loss of confinement, with no evidence of any nonlinear stabilizing effects. The influence of plasma rotation has also been investigated. It was found that while the mode remains unstable, its character changed at high rotation rates. It evolves from an internal mode with a very small displacement velocity at the separatrix, to an external mode with almost no radial component to the displacement velocity. Hall term effects were found to be capable of reducing the growth rate for small and elongated configurations, but again, a change in mode character was found to prevent the stabilization predicted in a previous analysis. Kinetic effects remain the most promising mechanism to explain the observed stability of current experiments.

1.
W. T.
Armstrong
,
R. K.
Linford
,
J.
Lipson
,
D. A.
Platts
, and
E. G.
Sherwood
,
Phys. Fluids
24
,
2068
(
1981
).
2.
S.
Ohi
,
T.
Minato
,
Y.
Kawakami
,
M.
Tanjyo
, and
S.
Okada
,
Phys. Rev. Lett.
51
,
1042
(
1983
).
3.
A. L.
Hoffman
,
J. T.
Slough
, and
D. G.
Harding
,
Phys. Fluids
26
,
1626
(
1983
).
4.
V. N.
Semenov
and
N. V.
Sosnin
,
Sov. J. Plasma Phys.
7
,
180
(
1981
).
5.
R. E.
Siemon
,
W. T.
Armstrong
,
D. C.
Barnes
,
R. R.
Bartsch
,
R. E.
Chrien
,
J. C.
Cochrane
,
W. N.
Hugrass
,
R. W.
Kewish
,
P. L.
Klingner
,
H. R.
Lewis
,
R. K.
Linford
,
K. F.
McKenna
,
R. D.
Milroy
,
D. J.
Rej
,
J. L.
Schwarzmeier
,
C. E.
Seyler
,
E. G.
Sherwood
,
R. L.
Spencer
, and
M.
Tuszewski
,
Fusion Technol.
9
,
13
(
1986
).
6.
M.
Tuszewski
,
W. T.
Armstrong
,
R. R.
Bartsch
,
R. E.
Chrien
, and
J. C.
Cochrane
,
Phys. Fluids
25
,
1696
(
1982
).
7.
M. N.
Rosenbluth
and
M. N.
Bussac
,
Nucl. Fusion
4
,
489
(
1979
).
8.
A. I. Shestakov, D. D. Schnack, and J. Killeen, in Proceedings of the US‐Japan Joint Symposium on Compact Toruses and Energetic Particle Injection (Princeton U.P., Princeton, NJ, 1979), p. 126.
9.
R. A.
Clemente
and
J. L.
Milovich
,
Phys. Lett. A
85
,
148
(
1981
).
10.
J. H.
Hammer
,
Nucl. Fusion
21
,
488
(
1981
).
11.
J. L.
Schwarzmeier
,
D. C.
Barnes
,
D. W.
Hewett
,
C. E.
Seyler
, and
A. I.
Shestakov
,
Phys. Fluids
26
,
1295
(
1983
).
12.
D. C. Barnes, A. Y. Aydemir, D. V. Anderson, A. I. Shestakov, and D. D. Schnack, in Proceedings of the 3rd Symposium on the Physics and Technology of Compact Toroids in the Magnetic Fusion Energy Program (Los Alamos National Laboratory, Los Alamos, NM, 1981), p. 134.
13.
R.
Horiuchi
and
T.
Sato
,
Phys. Fluids B
1
,
581
(
1989
).
14.
D. C.
Barnes
,
J. L.
Schwarzmeier
,
H. R.
Lewis
, and
C. E.
Seyler
,
Phys. Fluids
29
,
2616
(
1986
).
15.
Z.
Mikic
and
D. C.
Barnes
,
Bull. Am. Phys. Soc.
32
,
1728
(
1987
).
16.
E. J. Horowitz, Ph.D. thesis, University of California, Davis 1987.
17.
J. T.
Slough
and
A. L.
Hoffman
,
Nucl. Fusion
28
,
1121
(
1988
).
18.
R. A.
Clemente
and
J. L.
Milovich
,
Phys. Fluids
26
,
1874
(
1983
).
19.
A.
Ishida
,
H.
Momota
, and
L. C.
Steinhauer
,
Phys. Fluids
31
,
3024
(
1988
).
20.
D. C.
Barnes
,
D. D.
Schnack
, and
R. D.
Milroy
,
Bull. Am. Phys. Soc.
31
,
1488
(
1986
).
21.
D. S.
Harned
and
W.
Kerner
,
J. Comput. Phys.
60
,
62
(
1985
).
22.
D. D.
Schnack
,
D. C.
Barnes
,
Z.
Mikic
,
D. S.
Harned
, and
E. J.
Caramana
,
J. Comput. Phys.
70
,
330
(
1987
).
23.
R. D.
Milroy
and
J. U.
Brackbill
,
Phys. Fluids
25
,
775
(
1982
).
24.
L. C.
Steinhauer
,
Phys. Fluids
24
,
328
(
1981
).
25.
D. S.
Harned
and
D. W.
Hewett
,
Nucl. Fusion
24
,
201
(
1984
).
26.
J. L. Staudenmeier and H. R. Lewis (private communication).
27.
D. C. Barnes, J. L. Schwarzmeier, and H. R. Lewis, in Proceedings of the 7th Symposium on the Physics and Technology of Compact Toroids in the Magnetic Fusion Energy Program (Los Alamos National Laboratory, Los Alamos, NM, 1985), p. 159.
This content is only available via PDF.
You do not currently have access to this content.