A normal‐mode stability analysis is performed on a set of stationary equilibrium configurations, originally introduced by Chiuderi, Pietrini, and Torricelli‐Ciamponi (Astrophys. J., in press) to describe the structure of extragalactic jets. The examined equilibria are characterized by three parameters that allow the magnetic field configuration and the magnitude of the flow speed to be changed. Moreover, two different cases for the equilibrium velocity field are considered, namely v0B0, and a purely longitudinal v0. Thus the instability properties of a wide range of magnetic and flow structures are studied numerically and the growth rates as a function of the longitudinal wavenumber k are derived for the azimuthal mode numbers m=0,+1,−1. The aim is both to analyze the behavior of the instability growth rates as a function of the equilibrium parameters and the flow structure and to look for the existence of regions in the equilibrium parameter space corresponding to stable equilibria. A restricted ‘‘stable’’ region for the two considered flow patterns has been identified: configurations characterized by a predominantly longitudinal magnetic field and a velocity smaller or comparable to the Alfvén speed turn out to be stable.

1.
I. B.
Bernstein
,
E. A.
Frieman
,
M. D.
Kruskal
, and
R. M.
Kulsrud
,
Proc. R. Soc. London Ser. A
244
,
17
(
1958
).
2.
A.
Bondeson
,
R.
Iacono
, and
A.
Bhattacharjee
,
Phys. Fluids
30
,
2167
(
1987
).
3.
S. R.
Choudhury
and
R. V. E.
Lovelace
,
Astrophys. J.
302
,
188
(
1986
).
4.
A.
Miura
and
P. L.
Pritchett
,
J. Geophys. Res.
87
,
7431
(
1982
).
5.
T. P.
Ray
and
A. I.
Ershkovich
,
Mon. Not. R. Astron. Soc.
204
,
821
(
1983
).
6.
A. Ferrari, in Unstable Current Systems and Plasma Instabilities in Astrophysics, IAU Symposium 107, edited by M. R. Kundu and G. D. Holman (Reidel, Dordrecht, The Netherlands, 1985), p. 393.
7.
D. A.
Clarke
,
M. L.
Norman
, and
J. O.
Burns
,
Astrophys. J.
311
,
L63
(
1986
).
8.
R.
Fiedler
and
T. W.
Jones
,
Astrophys. J.
283
,
532
(
1984
).
9.
H.
Cohn
,
Astrophys. J.
269
,
500
(
1983
).
10.
A.
Ferrari
,
E.
Trussoni
, and
L.
Zaninetti
,
Mon. Not. R. Astron. Soc.
196
,
1051
(
1981
).
11.
T. P.
Ray
,
Mon. Not. R. Astron.
196
,
195
(
1981
).
12.
A.
Ferrari
,
S.
Massaglia
, and
E.
Trussoni
,
Mon. Not. R. Astron. Soc.
198
,
1065
(
1982
).
13.
K.
Brau
,
M.
Bitter
,
R. J.
Goldston
,
D.
Manos
,
K.
McGuire
, and
S.
Suckewer
,
Nucl. Fusion
23
,
1643
(
1983
).
14.
E.
Hameiri
,
Phys. Fluids
26
,
230
(
1983
).
15.
J. A.
Tataronis
and
M.
Mond
,
Phys. Fluids
30
,
84
(
1987
).
16.
C. Chiuderi, P. Pietrini, and G. Torricelli‐Ciamponi, Astrophys. J., in press.
17.
G. Batemen, MHD Instabilities (MIT Press, Cambridge, MA, 1978), p. 110.
18.
G.
Einaudi
and
F.
Rubini
,
Phys. Fluids
29
,
2563
(
1985
).
19.
G.
Einaudi
and
Y.
Mok
,
J. Plasma Phys.
34
,
259
(
1985
).
20.
E. Corbelli and G. Torricelli‐Ciamponi (submitted to Phys. Fluids B).
21.
S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Oxford U.P., London, 1961), p. 556.
This content is only available via PDF.
You do not currently have access to this content.