Accurate knowledge of the equation of state (EOS) of deuterium–tritium (DT) mixtures is critically important for inertial confinement fusion (ICF). Although the study of EOS is an old topic, there is a longstanding lack of global accurate EOS data for DT within a unified theoretical framework. DT fuel goes through very wide ranges of density and temperature from a cold condensed state to a hot dense plasma where ions are in a moderately or even strongly coupled state and electrons are in a partially or strongly degenerate state. The biggest challenge faced when using first-principles methods for obtaining accurate EOS data for DT fuel is the treatment of electron–ion interactions and the extremely high computational cost at high temperatures. In the present work, we perform extensive state-of-the-art ab initio quantum Langevin molecular dynamics simulations to obtain EOS data for DT mixtures at densities from 0.1 g/cm3 to 2000 g/cm3 and temperatures from 500 K to 2000 eV, which are relevant to ICF processes. Comparisons with average-atom molecular dynamics and orbital-free molecular dynamics simulations show that the ionic strong-coupling effect is important for determining the whole-range EOS. This work can supply accurate EOS data for DT mixtures within a unified ab initio framework, as well as providing a benchmark for various semiclassical methods.

Inertial confinement fusion (ICF) is one of the most promising approaches to achieving an unlimited supply of clean energy. In conventional central ignition designs, cryogenic deuterium–tritium (DT) fuel is compressed to a state of high density and high temperature by an imploding ablator driven by strong sources such as intense laser pulses, x-rays generated by laser ablation, and Z-pinches.1,2 In the process of ICF, the imploding DT fuel goes from a cold condensed state to one of warm dense matter, finally reaching the hot dense plasma regime, where the density covers a wide range from 0.1 g/cm3 to 1000 g/cm3 and the temperature varies from several hundred kelvin to a few thousand electronvolts.3 Accurate knowledge of the thermodynamic properties of DT fuel such as its equation of state (EOS) and its transport coefficient in these wide density and temperature ranges is essential for ICF designs using hydrodynamic simulations.4–13 

To obtain an accurate EOS of DT mixtures, much effort has been devoted to measuring the Hugoniot and related properties of hydrogen and deuterium under shock compressions driven by gas guns,14 converging shocks,15 high-power lasers,16–18 and magnetically driven fliers.19,20 However, owing to the complex nature of condensed hydrogen and the challenges faced in the development of suitable diagnostic techniques, there is still a scarcity of experimental data. To date, the pressures reached in the laboratory are limited to several megabars, and the accuracy of shock-compression data is not yet sufficient to establish the reliability of various theoretical models. Consequently, theoretical calculations have become the most important approach to obtaining EOS data over the wide ranges of density and temperature relevant to ICF.12 

A number of theoretical methods have been developed for calculating the EOS of matter under extreme conditions. EOS data for hydrogen and its isotopes generated by chemical models21–24 and the SESAME EOS tables25,26 are widely used in radiation hydrodynamic simulations because these models are computationally efficient. To accurately describe the electronic structure of hot dense plasmas, the average atom (AA) model27,28 was developed under the assumption of a single-particle spherically symmetric ionic potential. In this model, a pseudo-atom with an average fractional occupation number for electron orbitals is used to approximately describe the ions in the plasma environment. It should be noted that at high densities, ion–ion interactions could break the spherical symmetry of the ionic potential, and ionic correlation effects must therefore be taken into account. A method that combines the AA model and molecular dynamics simulations (AAMD)29 has been proposed to treat ionic correlation effects at the level of pair correlations for calculating EOS data for hot dense plasmas. Although these methods have been extensively applied to the high-energy-density plasma regime, they cannot provide a satisfactory description of the strong-coupling state of DT fuel that exists in ICF processes.30 

At present, two ab initio approaches, namely, density functional theory31–33 (DFT)-based quantum molecular dynamics (QMD)34–36 and quantum Monte Carlo (QMC) methods,37–40 are most widely used to calculate the EOS of materials at high densities and temperatures. One of the most promising QMC methods is path-integral Monte Carlo (PIMC),37,38 which treats ions and electrons quantum-mechanically on the same footing. Another QMC algorithm is coupled electron–ion Monte Carlo (CEIMC),39,40 which uses the conventional QMC method to obtain the potential energy surface directly. Although both of these have been employed to investigate the thermodynamic properties of hydrogen and its isotopes, the CEIMC predictions disagree with the experimental principal Hugoniot of deuterium,41 whereas PIMC becomes computationally prohibitive at low temperatures. On the other hand, within the Kohn–Sham–Mermin DFT framework, the ionic strong-coupling effect, which is significant in the high-density region of the DT phase diagram, can be included naturally in QMD, and the key approximation in principle is the exchange-correlation functional. To overcome the prohibitive computational cost of QMD at extremely high temperatures, orbital-free molecular dynamics (OFMD),42–44 which constructs the approximate noninteracting free energy functional without the assistance of single-electron wavefunctions, and an extended QMD with a plane-wave approximation at high energy have been proposed.45 Although OFMD is highly efficient, it is inaccurate at low temperatures because it lacks electron orbital information. Some EOS data for hydrogen and deuterium have been obtained by combining the two methods, using QMD at low temperature and a semiclassical method such as OFMD at high temperatures.6 In this case, the location of the boundary and the transition between the two methods is an essential but challenging task. The quantum Langevin molecular dynamics (QLMD) method was developed for a unified description of matter over a wide range from the cold condensed state to the ideal plasma gas.46 It not only considers the electron–ion collision effects at high temperatures, which is usually neglected in QMD simulations, but also has a lower computational cost than conventional QMD.47 QLMD has been successfully applied to calculate the wide-range EOS of hydrogen, hydrogen–helium mixtures, and iron.48–52 

In this work, we perform extensive simulations to calculate the pressure and internal energy of DT mixtures over wide ranges of density and temperature using ab initio QLMD simulations. In contrast to EOS tables obtained by combining various theoretical methods each of which is suitable for different density and temperature ranges, the EOS data presented in this work, which can be used for hydrodynamic simulations of ICF implosions, are obtained for the first time within a unified ab initio framework. We also compare the EOS data obtained from QLMD simulations with those from AAMD and OFMD simulations to assess the accuracy of these data and the regions of validity of these methods.

In this section, we briefly introduce the QLMD simulation method. In conventional QMD simulations, ions move on the smooth potential surface obtained from Kohn–Sham DFT (KSDFT) calculations of electronic structure within the framework of the Born–Oppenheimer approximation. The physical quantities are averaged over all the configurations along the MD trajectories after a thermalization process. QMD has been extensively applied in a variety of fields from cold condensed matter to warm dense matter. We should note that when matter is in a warm or even a hot dense state, a large number of electrons are excited or ionized. These nearly free electrons form a sea of electrons in warm or hot dense matter, and there are frequent elastic or inelastic electron–ion collisions. There is an analogy between ions in warm or hot dense matter and heavy particles in Brownian motion. In the warm or hot dense regime, ions move in the electron sea as heavy Brownian particles, and electron–ion collisions occur frequently. The effects of these collisions, which are not included in conventional adiabatic QMD simulations, play important roles in determining the structures and thermodynamic properties of warm dense matter. We introduce such electron–ion collision-induced friction (EI-CIF) into the ion dynamics within an adiabatic framework, and we describe the ion motion using the Langevin equation, which takes the form

MIR̈I=FγMIṘI+NI,
(1)

where MI is the ion mass, RI is the ion position, F is the force calculated from DFT, γ is the friction coefficient, and NI is a Gaussian random force.

As a key parameter, the friction coefficient γ plays a central role in QLMD. There are three contributions to γ: γ = γB + γf + γa. The most important of these, γB, represents electron–ion collisions and is derived according to the assumptions of the Rayleigh model,53 

γB=2πmeMIZ*4πni31/3kBTme,
(2)

where me is the electron mass, ni is the ion number density, and Z* is the average degree of ionization, which is obtained by another approach such as the average atom model. The second contribution, γf, arises from force errors, i.e., it is the difference between the force obtained with insufficient convergence and that obtained with sufficient convergence in otherwise identical self-consistent-field calculations.47 The Gaussian distribution of the force errors makes it possible to accelerate the QMD simulation with the Langevin equation. The third contribution, γa, is generally used as a conventional Langevin thermostat parameter to maintain a constant temperature. In the warm or hot dense regime, in particular at high temperatures, the electron–ion friction coefficient γB makes the dominant contribution to ion motion, and thus γf and γa can be neglected at relatively high temperatures.

It should be noted that the friction coefficient in Eq. (2) depends on an ion charge Z* that is determined by an average atom model. This introduces a decidedly non-ab initio element to QLMD simulations. In fact, the DT mixture is fully ionized in most of the regime shown in Fig. 1 below. Even if it is only partially ionized, the error introduced in Z* can be neglected because the friction coefficient is assumed to be in an appropriate range such that the ion–electron collisions and the dynamical behavior are described correctly.46 

FIG. 1.

Density–temperature state points chosen for EOS calculations for a DT mixture. The dashed lines for the coupling parameter Γ = 0.1, 1, and 10 and the dot-dashed lines for the degeneracy parameter θ = 0.01, 0.1, and 1 are presented as guidelines.

FIG. 1.

Density–temperature state points chosen for EOS calculations for a DT mixture. The dashed lines for the coupling parameter Γ = 0.1, 1, and 10 and the dot-dashed lines for the degeneracy parameter θ = 0.01, 0.1, and 1 are presented as guidelines.

Close modal

The friction coefficient and the Gaussian random force are connected by the fluctuation–dissipation theorem

NI(0)NI(t)=6γMIkBTdt,
(3)

where dt is the molecular dynamics time step and the random forces are generated as NI2=6γMIkBT/dt.

We use the Verlet algorithm to integrate the Langevin equation (1),

RI(t+dt)=RI(t)+112γTdt1+12γTdt[RI(t)RI(tdt)]+dt2MI(1+12γTdt)[F(t)+NI(t)],
(4)

and the ion velocity at time t + dt is

vI(t+dt)=ṘI=RI(t+dt)RI(tdt)2dt.
(5)

We compare the EOS obtained from QLMD with the AAMD and OFMD simulations at typical density–temperature state points. In AAMD, the AA model is used to solve for the electron density, and then the modified temperature- and density-dependent Gordon–Kim (GK) theory is employed to obtain the ion–ion pair potential based on the electron density.29,54 Finally, classical MD simulations are carried out for the ion motions. Specifically, we obtain the electron density by using a modified AA model to include the temperature and density effects on the electron distributions in a statistical manner.27 The influence of the plasma environment on the atom is assumed to have spherical symmetry on average, and the occupation number of electrons on the orbitals of such a pseudo-atom is averaged over the possible ionic charge states. The electron orbitals of the ions are solved via the fully relativistic self-consistent-field Dirac equation

dPnκ(r)dr+κrPnκ(r)=1c[ϵnκ+c2V(r)]Qnκ(r),
(6a)
dQnκ(r)drκrQnκ(r)=1c[ϵnκc2V(r)]Pnκ(r),
(6b)

where P(r) and Q(r) are respectively the large and small components of the wave function. V(r) is the self-consistent potential, which consists of static, exchange, and correlation potentials. Because the thermal fluctuations of ions in a plasma produce dynamic energy level broadening of the ions, Gaussian functions centered at the corresponding electron orbital energies are introduced into the Fermi–Dirac distribution of electrons. With this approach, the instability of the pressure-induced electronic ionization with density can be avoided in a natural manner.27 

In the GK theory,29,54 the total energy of a system includes the electrostatic Coulomb potential energy, the exchange potential energy, the correlation energy, and the kinetic energy. We construct a two-atom system, and the ion–ion pair interaction potential is then given by the difference in total energy between the coupled two-atom system and the two isolated-atom systems. It should be noted that at high temperatures, ionic many-body correlation effects will be very weak and can be neglected, and thus a pair potential is accurate enough to describe the ion correlations. However, at low temperatures, many-body correlations become important, and the pair-potential-based AAMD will deviate from ab initio methods.

The main difference between traditional QMD and OFMD is that the driving forces of the ions are obtained from two different DFT approaches: KSDFT and orbital-free DFT (OFDFT), respectively. In the framework of finite-temperature DFT,33 the electron free energy is obtained by minimizing the grand canonical potential with respect to the electron density n(r). The grand canonical potential has the form43 

Ω[n]=F[n]+dr[v(r)μ]n(r),
(7)

where v(r) is the external potential acting on the electrons corresponding to the density n, and μ is the chemical potential. The free energy functional F[n] is composed of the noninteracting free energy Fs[n], the classical Coulomb repulsion energy (i.e., Hartree energy) FH[n], and the exchange-correlation free energy Fxc[n],

F[n]=Fs[n]+FH[n]+Fxc[n].
(8)

In conventional KSDFT, a sophisticated scheme exploits the one-electron orbitals of the noninteracting system to construct the electron density of the real system and thereby the total free energy. The advantage of KSDFT is that the noninteracting free energy functionals Fs[n] can be constructed exactly from the one-electron orbitals and electron Fermi–Dirac occupations, thereby giving an explicit Euler equation once a suitable approximate Fxc is provided.

In contrast to conventional KSDFT, in OFDFT, the noninteracting functionals Ts[n] and Ss[n] are formulated directly in terms of the electron density rather than the KS orbitals. Minimization of the grand canonical potential in Eq. (7) with respect to the electron density n(r) then gives the Euler–Lagrange equation

δTs[n]δnTδSs[n]δn+δFH[n]δn+δFxc[n]δn=μv(r).
(9)

The computational cost of solving this equation scales linearly with the system size and is essentially independent of temperature. The accuracy of OFMD is largely determined by the quality of the noninteracting free energy functional.

We performed extensive calculations for the EOS of a DT mixture over wide ranges of temperature and density for ICF applications. The density–temperature state points chosen in this work are shown in Fig. 1. The density ranges from 0.1 g/cm3 to 2000 g/cm3 and the temperature from 500 K to 2000 eV. Regarding density and temperature, we can use two parameters, namely, the ion coupling parameter Γ = Z*2/(kBTa) and the electron degeneracy parameter θ = T/TF, to define states of matter,55 where Z* is the average degree of ionization, T is the temperature, kB is Boltzmann’s constant, a=[3/(4πni)]1/3 is the mean ion sphere radius, TF=(3π2ne)2/3/2 is the Fermi temperature, ne is the electron number density, and ni is the ion number density. When the values of θ and Γ are close to 1, matter is in a partially degenerate and moderately coupled state. When θ ≪ 1, matter is strongly degenerate; conversely, it is weakly degenerate when θ ≫ 1. Matter is strongly or weakly coupled when the coupling parameter Γ ≫ 1 or Γ ≪ 1, respectively. As shown in Fig. 1, the coupling parameter Γ corresponding to the state points in this work is greater than 0.1, and most of the state points have Γ ∼ 1 or ≫1. Thus, the DT ions in the ICF process are in states ranging from moderately to strongly coupled. The degeneracy parameter θ corresponding to most of the state points is between 0.01 and 1. Thus, the electrons of DT are partially in strongly degenerate states.

We performed QLMD simulations using our locally modified version of the Quantum-ESPRESSO package.56 The generalized gradient approximation in the Perdew–Burke–Ernzerhof parametrization57 was used to treat the electron exchange-correlation functional. A norm-conserving pseudopotential was used in low-density conditions and a Coulomb pseudopotential with a cutoff radius of 0.005 a.u. was used in high-density conditions. The plane-wave cutoff energy was from 100 Ry to 1000 Ry, depending on the temperature and density. In the finite-temperature DFT framework, electrons occupy orbitals according to the Fermi–Dirac distribution. We included sufficient energy bands to ensure that the highest occupied band energy was higher than the chemical potential by at least 10kBT. Owing to the high computational efficiency of QLMD simulations resulting from the large self-consistent field tolerance, we can extend the QLMD simulation to extremely high temperatures at affordable computational cost. We used a supercell including 128–432 atoms, depending on the density. The mixing ratio of D and T atoms was 1:1. The Γ point was used to sample the Brillouin zone in the MD simulations. Convergence test calculations with denser k-point grids and larger supercells did not show any significant variations in the EOS data. The relative error was ∼1% for pressure and 5 meV/atom for energy. For thermodynamic statistics, 2000–5000 steps after thermalization, with time steps of 0.02 fs–1 fs, were used.

In the OFMD calculations, the finite-temperature Thomas–Fermi noninteracting free energy functional with the von Weizsäcker density gradient correction (TFVW)58,59 was used. The Perdew–Burke–Ernzerhof parameterized generalized gradient approximation functional was adopted for the electronic exchange-correlation interaction. A local pseudopotential was employed in all OFMD calculations.43 The numerical grid for real-space integrations was set to 96 × 96 × 96 to ensure convergence of the free energy and pressure. All the OFMD calculations were performed with our locally modified version of PROFESS.60 

A well-known ab initio EOS table of deuterium for ICF applications was derived by Hu et al.6 using PIMC simulations. In Table I, we compare the QLMD results with the PIMC data. We select ten density–temperature points for comparison. It can be seen that the QLMD results are in good agreement with the PIMC data. The pressures obtained from QLMD simulations are slightly lower than those from PIMC simulations at low temperatures. At high temperatures, however, the opposite trend is seen. It was recently demonstrated that the remarkable agreement of QMD simulations with the experimental first-shock Hugoniot of deuterium arises from a cancellation of errors in the DFT model, whereas many-body methods like CEIMC can introduce non-negligible and additive errors into the evaluation of the Hugoniot curve.41 This reminds us that in order to obtain more accurate EOS data, it is necessary to continuously reduce the size of the approximations in either the DFT model or the PIMC simulations.

TABLE I.

Comparison of pressure between QLMD calculations and ab initio KSDFT-MD and PIMC calculations from Hu et al.6 

rs (bohr)T (K)PQLMD (Mbar)PHu (Mbar)
1.5 31 250 3.98 4.67 
1.5 62 500 7.08 7.24 
1.5 95 250 10.67 10.53 
1.5 125 000 14.03 13.68 
1.0 95 250 51.5 51.9 
1.0 125 000 62.0 61.1 
1.0 181 825 83.0 81.8 
1.0 250 000 109.6 105.4 
0.5 400 000 2152 2212 
0.5 500 000 2430 2523 
rs (bohr)T (K)PQLMD (Mbar)PHu (Mbar)
1.5 31 250 3.98 4.67 
1.5 62 500 7.08 7.24 
1.5 95 250 10.67 10.53 
1.5 125 000 14.03 13.68 
1.0 95 250 51.5 51.9 
1.0 125 000 62.0 61.1 
1.0 181 825 83.0 81.8 
1.0 250 000 109.6 105.4 
0.5 400 000 2152 2212 
0.5 500 000 2430 2523 

We also make a direct comparison of pressures obtained from these methods to show the applicability of AAMD and OFMD. We can see from Fig. 2 that at densities of 10 g/cm3 and 100 g/cm3, the pressures obtained from AAMD and OFMD simulations are in good agreement with those from QLMD in the temperature range from 1 eV to 300 eV, although the AAMD result is slightly higher than that from the QLMD calculation at 1 eV. In contrast to what is found at the densities of 10 g/cm3 and 100 g/cm3, when the density is as low as 4.3 g/cm3 and 1 g/cm3, the pressures exhibit large differences with decreasing temperature. The pressures from AAMD are remarkably larger than those from QLMD at temperatures below 10 eV. We note that the calculation of the electronic structure in AAMD employs a statistical single-atom model for ions in the plasma environment, and it neglects the correlation effects of ions, which play significant roles in the warm dense regime.30 Therefore, AAMD gives inaccurate EOS data in the strong-coupling regime. From the comparisons between QLMD and OFMD results, we can see that OFMD performs better than AAMD. However, the pressures obtained from OFMD at 1 g/cm3 and 4.3 g/cm3 are higher than those from QLMD, especially at low temperatures (<1 eV). This is a consequence of the inability of OFMD to provide satisfactory descriptions of the shell structure of bound electrons and the chemical bond, and therefore OFMD becomes invalid at relatively low temperatures. Moreover, it should be noted that the pressure from OFMD is strongly dependent on the choice of noninteracting free energy functional.61,62 The accuracy of the noninteracting free energy functional in OFMD simulations plays a critical role in calculations of the thermodynamic properties of matter under extreme conditions.

FIG. 2.

Comparisons of pressure between QLMD, AAMD, and OFMD simulations at different densities.

FIG. 2.

Comparisons of pressure between QLMD, AAMD, and OFMD simulations at different densities.

Close modal

To gain further insight into the differences between AAMD, OFMD, and QLMD, we compare the radial distribution function (RDF) between these simulations for a DT mixture at 1 g/cm3. Temperatures of 1000 K, 1 eV, and 5 eV are chosen for comparison. The results are presented in Fig. 3. We can see that at both 1000 K and 1 eV, the RDFs of DD, DT, and TT exhibit significant differences between AAMD, OFMD, and QLMD. When the temperature is as low as 1000 K, the RDFs obtained from QLMD have distinct peaks at 0.740 Å, 0.735 Å, and 0.725 Å for DD, TT, and DT, respectively. This means that there are a large number of molecules in QLMD simulations. By contrast, there are no molecular peaks of the RDFs in the OFMD simulations, which indicates that the DT mixture is in a dissociated atomic state in these simulations. The RDFs obtained from AAMD are similar to those from OFMD, although the first peaks are more structured in the case of AAMD. When the temperature is increased to 1 eV, there are still remarkable shoulders at about 0.9 Å in the QLMD simulations, indicating that there exist somewhat softened molecular structures. At 1 eV, the RDFs obtained both from AAMD and from OFMD show the distinct characteristics of atomic states, which is due to the fact that OFMD and AAMD cannot satisfactorily describe the bond formation in hydrogen molecules at low temperatures. When the temperature is increased to 5 eV, the RDFs obtained from three methods exhibit similar behavior, although there are still slight differences at the rising edge. At 5 eV, molecules have dissociated completely, and thus the spatial distributions of ions are in better agreement. From these comparisons, we can conclude that AAMD is accurate for hot dense DT mixtures and OFMD can be applied for calculating EOS data of DT mixtures over wider ranges of density and temperature than AAMD. However, neither of these two methods can provide accurate bonding information for DT mixtures at relatively low temperatures. In comparison with AAMD and OFMD, QLMD which is based on an accurate description of electronic structure and an efficient MD algorithm, can provide accurate EOS data for DT mixtures from low-temperature condensed states to the hot dense regime.

FIG. 3.

Comparisons of RDF between AAMD, QLMD, and OFMD simulations at different temperatures.

FIG. 3.

Comparisons of RDF between AAMD, QLMD, and OFMD simulations at different temperatures.

Close modal

Table II shows the pressure and internal energy of DT mixtures obtained from QLMD simulations. The density ranges from 0.1 g/cm3 to 2000 g/cm3 and the temperature from 500 K to 2000 eV. Here, the total internal energy is obtained from

E=FTS+Ekin,
(10)

where F is the free energy of the simulation system obtained from the finite-temperature DFT self-consistent-field iterations, S is the entropy, T is the temperature, and Ekin is the kinetic energy of ions. The pressure is calculated from

P=nkBT+PDFT,
(11)

where n is the ion number density, nkBT is the ideal kinetic contribution of ions, and PDFT is the interaction contribution calculated from DFT self-consistent-field iterations, which includes contributions from the kinetic energy of electrons, the ion–electron interaction, the Hartree interaction of electrons, and the electronic exchange-correlation interaction.

TABLE II.

Pressure and internal energy of DT mixture obtained from QLMD simulations. The mixing ratio of the D and T atoms is 1:1.

ρ (g/cm3)T (eV)P (Mbar)E (eV/atom)
0.1 0.0431 0.830 630 × 10−3 0.893 764 × 10−1 
0.1 0.0862 0.208 015 × 10−2 0.159 480 × 100 
0.1 0.4309 0.159 371 × 10−1 0.738 088 × 100 
0.1 0.464 277 × 10−1 0.286 924 × 101 
0.1 0.265 759 × 100 0.156 949 × 102 
0.5 0.0431 0.292 202 × 10−1 0.296 166 × 10−1 
0.5 0.0862 0.472 310 × 10−1 0.170 432 × 100 
0.5 0.4309 0.118 262 × 100 0.857 053 × 100 
0.5 0.241 796 × 100 0.253 468 × 101 
0.5 0.131 360 × 101 0.125 735 × 102 
0.5 10 0.303 850 × 101 0.205 336 × 102 
1.0 0.0431 0.217 280 × 100 0.221 752 × 100 
1.0 0.0862 0.243 720 × 100 0.326 576 × 100 
1.0 0.4309 0.424 218 × 100 0.133 333 × 101 
1.0 0.690 078 × 100 0.260 704 × 101 
1.0 0.289 034 × 101 0.118 370 × 102 
1.0 10 0.627 545 × 101 0.218 182 × 102 
1.0 20 0.133 908 × 102 0.553 765 × 102 
1.0 30 0.211 625 × 102 0.868 661 × 102 
2.0 0.0862 0.126 027 × 101 0.505 120 × 100 
2.0 0.4309 0.160 740 × 101 0.120 571 × 101 
2.0 0.218 573 × 101 0.226 142 × 101 
2.0 0.669 054 × 101 0.109 127 × 102 
2.0 10 0.130 848 × 102 0.238 711 × 102 
2.0 20 0.266 271 × 102 0.514 801 × 102 
3.0 0.0862 0.347 879 × 101 0.135 113 × 101 
3.0 0.4309 0.406 601 × 101 0.204 982 × 101 
3.0 0.500 941 × 101 0.315 576 × 101 
3.0 0.115 348 × 102 0.114 898 × 102 
3.0 10 0.209 633 × 102 0.240 219 × 102 
3.0 20 0.412 407 × 102 0.513 723 × 102 
4.3 0.4309 0.903 747 × 101 0.323 160 × 101 
4.3 0.104 389 × 102 0.566 524 × 101 
4.3 0.196 980 × 102 0.145 167 × 102 
4.3 10 0.326 685 × 102 0.255 680 × 102 
4.3 20 0.619 302 × 102 0.455 667 × 102 
4.3 30 0.930 045 × 102 0.739 879 × 102 
6.0 0.4309 0.182 148 × 102 0.542 315 × 101 
6.0 0.200 878 × 102 0.656 613 × 101 
6.0 0.329 577 × 102 0.148 466 × 102 
6.0 10 0.510 709 × 102 0.268 127 × 102 
6.0 20 0.897 147 × 102 0.505 911 × 102 
6.0 30 0.131 459 × 103 0.785 104 × 102 
6.0 50 0.213 198 × 103 0.134 983 × 103 
8.0 0.4309 0.326 272 × 102 0.785 861 × 101 
8.0 0.353 270 × 102 0.910 206 × 101 
8.0 0.518 475 × 102 0.171 658 × 102 
8.0 10 0.744 856 × 102 0.283 626 × 102 
8.0 20 0.125 218 × 103 0.536 383 × 102 
8.0 30 0.181 336 × 103 0.818 916 × 102 
8.0 50 0.290 176 × 103 0.136 064 × 103 
10 0.541 138 × 102 0.121 455 × 102 
10 0.752 248 × 102 0.203 847 × 102 
10 10 0.103 092 × 103 0.314 908 × 102 
10 20 0.166 441 × 103 0.559 489 × 102 
10 30 0.232 817 × 103 0.832 438 × 102 
10 50 0.365 237 × 103 0.143 951 × 103 
10 60 0.434 460 × 103 0.171 941 × 103 
10 70 0.495 289 × 103 0.199 242 × 103 
20 0.198 640 × 103 0.247 073 × 102 
20 10 0.293 952 × 103 0.438 820 × 102 
20 20 0.403 253 × 103 0.652 815 × 102 
20 30 0.504 169 × 103 0.844 459 × 102 
20 40 0.651 612 × 103 0.110 604 × 103 
30 0.417 386 × 103 0.310 208 × 102 
30 0.481 431 × 103 0.396 813 × 102 
30 10 0.558 413 × 103 0.501 033 × 102 
30 20 0.719 670 × 103 0.716 645 × 102 
30 30 0.897 887 × 103 0.953 480 × 102 
30 50 0.128 260 × 104 0.146 395 × 103 
30 80 0.189 396 × 104 0.227 263 × 103 
30 100 0.228 661 × 104 0.279 111 × 103 
40 0.702 601 × 103 0.423 181 × 102 
40 0.788 859 × 103 0.511 872 × 102 
40 10 0.890 611 × 103 0.615 825 × 102 
40 20 0.110 025 × 104 0.827 591 × 102 
40 30 0.132 767 × 104 0.105 468 × 103 
40 50 0.182 875 × 104 0.155 348 × 103 
40 80 0.263 455 × 104 0.235 454 × 103 
40 100 0.317 228 × 104 0.288 630 × 103 
50 0.105 061 × 104 0.589 545 × 102 
50 10 0.128 182 × 104 0.779 803 × 102 
50 20 0.154 161 × 104 0.991 708 × 102 
50 30 0.181 325 × 104 0.121 028 × 103 
50 40 0.211 662 × 104 0.145 931 × 103 
50 50 0.245 074 × 104 0.172 317 × 103 
50 60 0.269 388 × 104 0.197 413 × 103 
50 70 0.310 001 × 104 0.223 775 × 103 
50 80 0.337 949 × 104 0.244 219 × 103 
50 90 0.373 639 × 104 0.272 966 × 103 
50 100 0.402 437 × 104 0.291 582 × 103 
60 0.145 557 × 104 0.637 770 × 102 
60 0.158 439 × 104 0.727 918 × 102 
60 10 0.173 756 × 104 0.833 327 × 102 
60 20 0.203 882 × 104 0.103 714 × 103 
60 30 0.236 227 × 104 0.125 379 × 103 
60 50 0.308 837 × 104 0.173 926 × 103 
60 80 0.424 276 × 104 0.249 837 × 103 
80 0.242 667 × 104 0.737 350 × 102 
80 0.259 989 × 104 0.829 814 × 102 
80 10 0.280 119 × 104 0.934 068 × 102 
80 20 0.320 109 × 104 0.113 876 × 103 
80 30 0.361 744 × 104 0.134 881 × 103 
80 50 0.455 277 × 104 0.182 058 × 103 
100 0.360 545 × 104 0.108 789 × 103 
100 0.381 778 × 104 0.117 996 × 103 
100 10 0.400 615 × 104 0.126 345 × 103 
100 30 0.495 574 × 104 0.162 966 × 103 
100 50 0.620 446 × 104 0.210 407 × 103 
100 80 0.775 170 × 104 0.272 019 × 103 
100 100 0.901 808 × 104 0.320 191 × 103 
100 300 0.225 540 × 105 0.852 509 × 103 
150 10 0.805 511 × 104 0.173 198 × 103 
150 20 0.878 961 × 104 0.193 462 × 103 
150 30 0.951 154 × 104 0.213 229 × 103 
150 40 0.102 731 × 105 0.233 401 × 103 
150 50 0.110 512 × 105 0.254 745 × 103 
150 60 0.119 259 × 105 0.277 811 × 103 
150 70 0.127 475 × 105 0.299 820 × 103 
150 80 0.136 931 × 105 0.325 343 × 103 
150 90 0.145 807 × 105 0.348 694 × 103 
150 100 0.155 280 × 105 0.373 042 × 103 
150 200 0.256 413 × 105 0.639 960 × 103 
150 300 0.362 915 × 105 0.920 057 × 103 
200 10 0.130 680 × 105 0.214 326 × 103 
200 30 0.146 931 × 105 0.255 231 × 103 
200 50 0.170 607 × 105 0.296 192 × 103 
200 80 0.202 755 × 105 0.359 368 × 103 
200 100 0.226 732 × 105 0.407 772 × 103 
200 200 0.359 308 × 105 0.671 268 × 103 
200 300 0.499 215 × 105 0.947 821 × 103 
400 10 0.421 921 × 105 0.357 649 × 103 
400 30 0.457 385 × 105 0.393 904 × 103 
400 50 0.494 821 × 105 0.432 096 × 103 
400 80 0.558 434 × 105 0.497 470 × 103 
400 100 0.601 729 × 105 0.540 605 × 103 
400 200 0.844 886 × 105 0.784 326 × 103 
400 300 0.110 634 × 106 0.103 987 × 104 
400 400 0.137 026 × 106 0.129 070 × 104 
400 500 0.166 671 × 106 0.159 119 × 104 
400 600 0.196 346 × 106 0.188 826 × 104 
400 700 0.225 036 × 106 0.216 509 × 104 
400 800 0.254 658 × 106 0.245 899 × 104 
500 0.592 628 × 105 0.402 215 × 103 
500 10 0.615 391 × 105 0.422 430 × 103 
500 20 0.639 539 × 105 0.442 209 × 103 
500 40 0.688 266 × 105 0.483 048 × 103 
500 50 0.712 705 × 105 0.502 776 × 103 
500 60 0.734 843 × 105 0.522 595 × 103 
500 70 0.759 346 × 105 0.540 824 × 103 
500 80 0.785 441 × 105 0.562 702 × 103 
500 90 0.811 220 × 105 0.582 423 × 103 
500 100 0.834 765 × 105 0.602 426 × 103 
500 300 0.144 253 × 106 0.108 198 × 104 
500 400 0.175 729 × 106 0.131 825 × 104 
500 600 0.250 266 × 106 0.191 981 × 104 
500 800 0.319 268 × 106 0.249 025 × 104 
500 900 0.359 672 × 106 0.277 933 × 104 
600 10 0.824 551 × 105 0.472 746 × 103 
600 20 0.852 799 × 105 0.493 154 × 103 
600 30 0.880 921 × 105 0.512 682 × 103 
600 40 0.909 708 × 105 0.532 390 × 103 
600 50 0.940 306 × 105 0.554 167 × 103 
600 60 0.967 949 × 105 0.571 934 × 103 
600 70 0.998 670 × 105 0.592 776 × 103 
600 80 0.102 715 × 106 0.611 417 × 103 
600 90 0.105 698 × 106 0.631 554 × 103 
600 100 0.109 081 × 106 0.654 774 × 103 
600 200 0.142 588 × 106 0.877 112 × 103 
600 400 0.221 150 × 106 0.139 394 × 104 
600 500 0.263 333 × 106 0.167 003 × 104 
700 10 0.107 065 × 106 0.529 407 × 103 
700 20 0.110 244 × 106 0.548 872 × 103 
700 30 0.113 508 × 106 0.568 463 × 103 
700 40 0.116 879 × 106 0.588 468 × 103 
700 50 0.120 301 × 106 0.609 458 × 103 
700 60 0.123 842 × 106 0.630 543 × 103 
700 70 0.127 294 × 106 0.649 902 × 103 
700 80 0.130 446 × 106 0.667 672 × 103 
700 90 0.134 124 × 106 0.689 083 × 103 
700 100 0.138 138 × 106 0.712 666 × 103 
700 200 0.176 204 × 106 0.927 304 × 103 
700 400 0.266 514 × 106 0.143 925 × 104 
700 500 0.314 516 × 106 0.171 003 × 104 
800 10 0.134 187 × 106 0.583 366 × 103 
800 20 0.137 943 × 106 0.603 970 × 103 
800 30 0.141 636 × 106 0.623 423 × 103 
800 40 0.145 631 × 106 0.644 979 × 103 
800 50 0.149 328 × 106 0.663 649 × 103 
800 60 0.153 409 × 106 0.685 324 × 103 
800 70 0.157 280 × 106 0.704 522 × 103 
800 80 0.161 125 × 106 0.723 688 × 103 
800 90 0.165 350 × 106 0.746 691 × 103 
800 100 0.169 045 × 106 0.765 223 × 103 
800 200 0.213 167 × 106 0.984 776 × 103 
800 400 0.313 743 × 106 0.148 189 × 104 
800 500 0.367 831 × 106 0.174 929 × 104 
900 10 0.163 903 × 106 0.636 570 × 103 
900 20 0.168 094 × 106 0.656 813 × 103 
900 30 0.172 127 × 106 0.675 542 × 103 
900 40 0.176 287 × 106 0.694 598 × 103 
900 50 0.180 864 × 106 0.716 326 × 103 
900 60 0.185 036 × 106 0.735 248 × 103 
900 70 0.189 782 × 106 0.757 299 × 103 
900 80 0.194 191 × 106 0.777 325 × 103 
900 90 0.198 990 × 106 0.798 916 × 103 
900 100 0.203 012 × 106 0.816 659 × 103 
900 200 0.250 805 × 106 0.102 664 × 104 
900 400 0.363 881 × 106 0.152 672 × 104 
900 500 0.424 034 × 106 0.178 798 × 104 
900 600 0.485 994 × 106 0.205 993 × 104 
1000 10 0.196 137 × 106 0.688 637 × 103 
1000 20 0.200 572 × 106 0.707 797 × 103 
1000 30 0.205 116 × 106 0.726 987 × 103 
1000 40 0.209 798 × 106 0.746 911 × 103 
1000 50 0.214 735 × 106 0.768 303 × 103 
1000 60 0.219 515 × 106 0.787 275 × 103 
1000 70 0.224 192 × 106 0.804 680 × 103 
1000 80 0.228 979 × 106 0.825 465 × 103 
1000 90 0.234 152 × 106 0.846 817 × 103 
1000 100 0.239 005 × 106 0.864 189 × 103 
1000 200 0.289 583 × 106 0.106 906 × 104 
1000 300 0.347 559 × 106 0.129 872 × 104 
1000 400 0.399 541 × 106 0.149 109 × 104 
1000 500 0.465 088 × 106 0.176 053 × 104 
1000 700 0.618 038 × 106 0.236 502 × 104 
1500 10 0.390 805 × 105 0.926 828 × 103 
1500 20 0.397 952 × 106 0.947 931 × 103 
1500 30 0.405 044 × 106 0.968 592 × 103 
1500 40 0.411 886 × 106 0.988 016 × 103 
1500 50 0.418 707 × 106 0.100 780 × 104 
1500 60 0.425 154 × 106 0.102 478 × 104 
1500 70 0.432 483 × 106 0.104 628 × 104 
1500 80 0.439 258 × 106 0.106 480 × 104 
1500 90 0.446 302 × 106 0.108 313 × 104 
1500 100 0.453 229 × 106 0.110 064 × 104 
1500 200 0.528 935 × 106 0.130 170 × 104 
1500 300 0.610 289 × 106 0.151 908 × 104 
1500 400 0.701 521 × 106 0.175 979 × 104 
1500 500 0.794 686 × 106 0.200 413 × 104 
2000 10 0.595 386 × 106 0.110 960 × 104 
2000 30 0.613 423 × 106 0.115 065 × 104 
2000 50 0.631 282 × 106 0.118 863 × 104 
2000 100 0.675 121 × 106 0.128 456 × 104 
2000 300 0.866 001 × 106 0.168 119 × 104 
2000 500 0.108 091 × 107 0.212 541 × 104 
2000 1000 0.166 975 × 107 0.331 348 × 104 
2000 2000 0.314 344 × 107 0.541 042 × 104 
ρ (g/cm3)T (eV)P (Mbar)E (eV/atom)
0.1 0.0431 0.830 630 × 10−3 0.893 764 × 10−1 
0.1 0.0862 0.208 015 × 10−2 0.159 480 × 100 
0.1 0.4309 0.159 371 × 10−1 0.738 088 × 100 
0.1 0.464 277 × 10−1 0.286 924 × 101 
0.1 0.265 759 × 100 0.156 949 × 102 
0.5 0.0431 0.292 202 × 10−1 0.296 166 × 10−1 
0.5 0.0862 0.472 310 × 10−1 0.170 432 × 100 
0.5 0.4309 0.118 262 × 100 0.857 053 × 100 
0.5 0.241 796 × 100 0.253 468 × 101 
0.5 0.131 360 × 101 0.125 735 × 102 
0.5 10 0.303 850 × 101 0.205 336 × 102 
1.0 0.0431 0.217 280 × 100 0.221 752 × 100 
1.0 0.0862 0.243 720 × 100 0.326 576 × 100 
1.0 0.4309 0.424 218 × 100 0.133 333 × 101 
1.0 0.690 078 × 100 0.260 704 × 101 
1.0 0.289 034 × 101 0.118 370 × 102 
1.0 10 0.627 545 × 101 0.218 182 × 102 
1.0 20 0.133 908 × 102 0.553 765 × 102 
1.0 30 0.211 625 × 102 0.868 661 × 102 
2.0 0.0862 0.126 027 × 101 0.505 120 × 100 
2.0 0.4309 0.160 740 × 101 0.120 571 × 101 
2.0 0.218 573 × 101 0.226 142 × 101 
2.0 0.669 054 × 101 0.109 127 × 102 
2.0 10 0.130 848 × 102 0.238 711 × 102 
2.0 20 0.266 271 × 102 0.514 801 × 102 
3.0 0.0862 0.347 879 × 101 0.135 113 × 101 
3.0 0.4309 0.406 601 × 101 0.204 982 × 101 
3.0 0.500 941 × 101 0.315 576 × 101 
3.0 0.115 348 × 102 0.114 898 × 102 
3.0 10 0.209 633 × 102 0.240 219 × 102 
3.0 20 0.412 407 × 102 0.513 723 × 102 
4.3 0.4309 0.903 747 × 101 0.323 160 × 101 
4.3 0.104 389 × 102 0.566 524 × 101 
4.3 0.196 980 × 102 0.145 167 × 102 
4.3 10 0.326 685 × 102 0.255 680 × 102 
4.3 20 0.619 302 × 102 0.455 667 × 102 
4.3 30 0.930 045 × 102 0.739 879 × 102 
6.0 0.4309 0.182 148 × 102 0.542 315 × 101 
6.0 0.200 878 × 102 0.656 613 × 101 
6.0 0.329 577 × 102 0.148 466 × 102 
6.0 10 0.510 709 × 102 0.268 127 × 102 
6.0 20 0.897 147 × 102 0.505 911 × 102 
6.0 30 0.131 459 × 103 0.785 104 × 102 
6.0 50 0.213 198 × 103 0.134 983 × 103 
8.0 0.4309 0.326 272 × 102 0.785 861 × 101 
8.0 0.353 270 × 102 0.910 206 × 101 
8.0 0.518 475 × 102 0.171 658 × 102 
8.0 10 0.744 856 × 102 0.283 626 × 102 
8.0 20 0.125 218 × 103 0.536 383 × 102 
8.0 30 0.181 336 × 103 0.818 916 × 102 
8.0 50 0.290 176 × 103 0.136 064 × 103 
10 0.541 138 × 102 0.121 455 × 102 
10 0.752 248 × 102 0.203 847 × 102 
10 10 0.103 092 × 103 0.314 908 × 102 
10 20 0.166 441 × 103 0.559 489 × 102 
10 30 0.232 817 × 103 0.832 438 × 102 
10 50 0.365 237 × 103 0.143 951 × 103 
10 60 0.434 460 × 103 0.171 941 × 103 
10 70 0.495 289 × 103 0.199 242 × 103 
20 0.198 640 × 103 0.247 073 × 102 
20 10 0.293 952 × 103 0.438 820 × 102 
20 20 0.403 253 × 103 0.652 815 × 102 
20 30 0.504 169 × 103 0.844 459 × 102 
20 40 0.651 612 × 103 0.110 604 × 103 
30 0.417 386 × 103 0.310 208 × 102 
30 0.481 431 × 103 0.396 813 × 102 
30 10 0.558 413 × 103 0.501 033 × 102 
30 20 0.719 670 × 103 0.716 645 × 102 
30 30 0.897 887 × 103 0.953 480 × 102 
30 50 0.128 260 × 104 0.146 395 × 103 
30 80 0.189 396 × 104 0.227 263 × 103 
30 100 0.228 661 × 104 0.279 111 × 103 
40 0.702 601 × 103 0.423 181 × 102 
40 0.788 859 × 103 0.511 872 × 102 
40 10 0.890 611 × 103 0.615 825 × 102 
40 20 0.110 025 × 104 0.827 591 × 102 
40 30 0.132 767 × 104 0.105 468 × 103 
40 50 0.182 875 × 104 0.155 348 × 103 
40 80 0.263 455 × 104 0.235 454 × 103 
40 100 0.317 228 × 104 0.288 630 × 103 
50 0.105 061 × 104 0.589 545 × 102 
50 10 0.128 182 × 104 0.779 803 × 102 
50 20 0.154 161 × 104 0.991 708 × 102 
50 30 0.181 325 × 104 0.121 028 × 103 
50 40 0.211 662 × 104 0.145 931 × 103 
50 50 0.245 074 × 104 0.172 317 × 103 
50 60 0.269 388 × 104 0.197 413 × 103 
50 70 0.310 001 × 104 0.223 775 × 103 
50 80 0.337 949 × 104 0.244 219 × 103 
50 90 0.373 639 × 104 0.272 966 × 103 
50 100 0.402 437 × 104 0.291 582 × 103 
60 0.145 557 × 104 0.637 770 × 102 
60 0.158 439 × 104 0.727 918 × 102 
60 10 0.173 756 × 104 0.833 327 × 102 
60 20 0.203 882 × 104 0.103 714 × 103 
60 30 0.236 227 × 104 0.125 379 × 103 
60 50 0.308 837 × 104 0.173 926 × 103 
60 80 0.424 276 × 104 0.249 837 × 103 
80 0.242 667 × 104 0.737 350 × 102 
80 0.259 989 × 104 0.829 814 × 102 
80 10 0.280 119 × 104 0.934 068 × 102 
80 20 0.320 109 × 104 0.113 876 × 103 
80 30 0.361 744 × 104 0.134 881 × 103 
80 50 0.455 277 × 104 0.182 058 × 103 
100 0.360 545 × 104 0.108 789 × 103 
100 0.381 778 × 104 0.117 996 × 103 
100 10 0.400 615 × 104 0.126 345 × 103 
100 30 0.495 574 × 104 0.162 966 × 103 
100 50 0.620 446 × 104 0.210 407 × 103 
100 80 0.775 170 × 104 0.272 019 × 103 
100 100 0.901 808 × 104 0.320 191 × 103 
100 300 0.225 540 × 105 0.852 509 × 103 
150 10 0.805 511 × 104 0.173 198 × 103 
150 20 0.878 961 × 104 0.193 462 × 103 
150 30 0.951 154 × 104 0.213 229 × 103 
150 40 0.102 731 × 105 0.233 401 × 103 
150 50 0.110 512 × 105 0.254 745 × 103 
150 60 0.119 259 × 105 0.277 811 × 103 
150 70 0.127 475 × 105 0.299 820 × 103 
150 80 0.136 931 × 105 0.325 343 × 103 
150 90 0.145 807 × 105 0.348 694 × 103 
150 100 0.155 280 × 105 0.373 042 × 103 
150 200 0.256 413 × 105 0.639 960 × 103 
150 300 0.362 915 × 105 0.920 057 × 103 
200 10 0.130 680 × 105 0.214 326 × 103 
200 30 0.146 931 × 105 0.255 231 × 103 
200 50 0.170 607 × 105 0.296 192 × 103 
200 80 0.202 755 × 105 0.359 368 × 103 
200 100 0.226 732 × 105 0.407 772 × 103 
200 200 0.359 308 × 105 0.671 268 × 103 
200 300 0.499 215 × 105 0.947 821 × 103 
400 10 0.421 921 × 105 0.357 649 × 103 
400 30 0.457 385 × 105 0.393 904 × 103 
400 50 0.494 821 × 105 0.432 096 × 103 
400 80 0.558 434 × 105 0.497 470 × 103 
400 100 0.601 729 × 105 0.540 605 × 103 
400 200 0.844 886 × 105 0.784 326 × 103 
400 300 0.110 634 × 106 0.103 987 × 104 
400 400 0.137 026 × 106 0.129 070 × 104 
400 500 0.166 671 × 106 0.159 119 × 104 
400 600 0.196 346 × 106 0.188 826 × 104 
400 700 0.225 036 × 106 0.216 509 × 104 
400 800 0.254 658 × 106 0.245 899 × 104 
500 0.592 628 × 105 0.402 215 × 103 
500 10 0.615 391 × 105 0.422 430 × 103 
500 20 0.639 539 × 105 0.442 209 × 103 
500 40 0.688 266 × 105 0.483 048 × 103 
500 50 0.712 705 × 105 0.502 776 × 103 
500 60 0.734 843 × 105 0.522 595 × 103 
500 70 0.759 346 × 105 0.540 824 × 103 
500 80 0.785 441 × 105 0.562 702 × 103 
500 90 0.811 220 × 105 0.582 423 × 103 
500 100 0.834 765 × 105 0.602 426 × 103 
500 300 0.144 253 × 106 0.108 198 × 104 
500 400 0.175 729 × 106 0.131 825 × 104 
500 600 0.250 266 × 106 0.191 981 × 104 
500 800 0.319 268 × 106 0.249 025 × 104 
500 900 0.359 672 × 106 0.277 933 × 104 
600 10 0.824 551 × 105 0.472 746 × 103 
600 20 0.852 799 × 105 0.493 154 × 103 
600 30 0.880 921 × 105 0.512 682 × 103 
600 40 0.909 708 × 105 0.532 390 × 103 
600 50 0.940 306 × 105 0.554 167 × 103 
600 60 0.967 949 × 105 0.571 934 × 103 
600 70 0.998 670 × 105 0.592 776 × 103 
600 80 0.102 715 × 106 0.611 417 × 103 
600 90 0.105 698 × 106 0.631 554 × 103 
600 100 0.109 081 × 106 0.654 774 × 103 
600 200 0.142 588 × 106 0.877 112 × 103 
600 400 0.221 150 × 106 0.139 394 × 104 
600 500 0.263 333 × 106 0.167 003 × 104 
700 10 0.107 065 × 106 0.529 407 × 103 
700 20 0.110 244 × 106 0.548 872 × 103 
700 30 0.113 508 × 106 0.568 463 × 103 
700 40 0.116 879 × 106 0.588 468 × 103 
700 50 0.120 301 × 106 0.609 458 × 103 
700 60 0.123 842 × 106 0.630 543 × 103 
700 70 0.127 294 × 106 0.649 902 × 103 
700 80 0.130 446 × 106 0.667 672 × 103 
700 90 0.134 124 × 106 0.689 083 × 103 
700 100 0.138 138 × 106 0.712 666 × 103 
700 200 0.176 204 × 106 0.927 304 × 103 
700 400 0.266 514 × 106 0.143 925 × 104 
700 500 0.314 516 × 106 0.171 003 × 104 
800 10 0.134 187 × 106 0.583 366 × 103 
800 20 0.137 943 × 106 0.603 970 × 103 
800 30 0.141 636 × 106 0.623 423 × 103 
800 40 0.145 631 × 106 0.644 979 × 103 
800 50 0.149 328 × 106 0.663 649 × 103 
800 60 0.153 409 × 106 0.685 324 × 103 
800 70 0.157 280 × 106 0.704 522 × 103 
800 80 0.161 125 × 106 0.723 688 × 103 
800 90 0.165 350 × 106 0.746 691 × 103 
800 100 0.169 045 × 106 0.765 223 × 103 
800 200 0.213 167 × 106 0.984 776 × 103 
800 400 0.313 743 × 106 0.148 189 × 104 
800 500 0.367 831 × 106 0.174 929 × 104 
900 10 0.163 903 × 106 0.636 570 × 103 
900 20 0.168 094 × 106 0.656 813 × 103 
900 30 0.172 127 × 106 0.675 542 × 103 
900 40 0.176 287 × 106 0.694 598 × 103 
900 50 0.180 864 × 106 0.716 326 × 103 
900 60 0.185 036 × 106 0.735 248 × 103 
900 70 0.189 782 × 106 0.757 299 × 103 
900 80 0.194 191 × 106 0.777 325 × 103 
900 90 0.198 990 × 106 0.798 916 × 103 
900 100 0.203 012 × 106 0.816 659 × 103 
900 200 0.250 805 × 106 0.102 664 × 104 
900 400 0.363 881 × 106 0.152 672 × 104 
900 500 0.424 034 × 106 0.178 798 × 104 
900 600 0.485 994 × 106 0.205 993 × 104 
1000 10 0.196 137 × 106 0.688 637 × 103 
1000 20 0.200 572 × 106 0.707 797 × 103 
1000 30 0.205 116 × 106 0.726 987 × 103 
1000 40 0.209 798 × 106 0.746 911 × 103 
1000 50 0.214 735 × 106 0.768 303 × 103 
1000 60 0.219 515 × 106 0.787 275 × 103 
1000 70 0.224 192 × 106 0.804 680 × 103 
1000 80 0.228 979 × 106 0.825 465 × 103 
1000 90 0.234 152 × 106 0.846 817 × 103 
1000 100 0.239 005 × 106 0.864 189 × 103 
1000 200 0.289 583 × 106 0.106 906 × 104 
1000 300 0.347 559 × 106 0.129 872 × 104 
1000 400 0.399 541 × 106 0.149 109 × 104 
1000 500 0.465 088 × 106 0.176 053 × 104 
1000 700 0.618 038 × 106 0.236 502 × 104 
1500 10 0.390 805 × 105 0.926 828 × 103 
1500 20 0.397 952 × 106 0.947 931 × 103 
1500 30 0.405 044 × 106 0.968 592 × 103 
1500 40 0.411 886 × 106 0.988 016 × 103 
1500 50 0.418 707 × 106 0.100 780 × 104 
1500 60 0.425 154 × 106 0.102 478 × 104 
1500 70 0.432 483 × 106 0.104 628 × 104 
1500 80 0.439 258 × 106 0.106 480 × 104 
1500 90 0.446 302 × 106 0.108 313 × 104 
1500 100 0.453 229 × 106 0.110 064 × 104 
1500 200 0.528 935 × 106 0.130 170 × 104 
1500 300 0.610 289 × 106 0.151 908 × 104 
1500 400 0.701 521 × 106 0.175 979 × 104 
1500 500 0.794 686 × 106 0.200 413 × 104 
2000 10 0.595 386 × 106 0.110 960 × 104 
2000 30 0.613 423 × 106 0.115 065 × 104 
2000 50 0.631 282 × 106 0.118 863 × 104 
2000 100 0.675 121 × 106 0.128 456 × 104 
2000 300 0.866 001 × 106 0.168 119 × 104 
2000 500 0.108 091 × 107 0.212 541 × 104 
2000 1000 0.166 975 × 107 0.331 348 × 104 
2000 2000 0.314 344 × 107 0.541 042 × 104 

We should stress that the KSDFT calculations are still computationally expensive at high temperatures, even though QLMD lowers the convergence criteria of the self-consistent-field calculations. Therefore, 248 density–temperature state points are adopted to calculate the EOS of a DT mixture, as shown in Table II. These EOS data should be interpolated with a denser density–temperature grid set when applied to ICF hydrodynamic simulations. The interpolation approach can affect the accuracy of interpolated EOS data,63 and therefore a proper interpolation method needs to be employed. However, this is outside the scope of this work. In addition, when the density of matter is extremely high and the temperature is relatively low, nuclear quantum effects become significant for atomic structures, transport properties, and thermodynamic properties, especially in the case of light elements such as hydrogen.64,65 We can use a parameter α, which is defined as the ratio of the ionic thermal de Broglie wavelength to the mean distance between ions, to measure the degree to which the ions exhibit a quantum nature. For all the densities and temperatures considered here, α is less than 0.3. In terms of our previous investigations,66 nuclear quantum effects play notable roles in static structures and thermodynamic properties only if α > 0.3. Therefore, the quantum nature of the DT ions can be neglected in this work.

We have performed extensive QLMD simulations to obtain EOS data for DT mixtures over wide ranges of density (from 0.1 g/cm3 to 2000 g/cm3) and temperature (from 500 K to 2000 eV) relevant to ICF implosions. Comparisons with AAMD and OFMD simulations reveal significant discrepancies at relatively low temperatures, where the strong ionic coupling plays a remarkable role in determining the EOS of DT mixtures. The DFT-based simulation methods provide more reliable EOS data than previous semiclassical methods. In the future, we should pay special attention to basic physical issues such as electronic many-body effects and nonlocal interactions65 to meet the requirements for higher-precision EOS data not only for ICF applications, but also for planetary science and astrophysics.

This work was supported by the Science Challenge Project under Grant No. TZ2016001, the National Key R&D Program of China under Grant No. 2017YFA0403200, the National Natural Science Foundation of China under Grant Nos. 11874424 and 11774429, and the NSAF under Grant No. U1830206. All calculations were carried out at the Research Center of Supercomputing Applications at NUDT.

1.
E. M.
Campbell
,
V. N.
Goncharov
,
T. C.
Sangster
,
S. P.
Regan
,
P. B.
Radha
 et al, “
Laser-direct-drive program: Promise, challenge, and path forward
,”
Matter Radiat. Extremes
2
,
37
(
2017
).
2.
Z.
Li
,
Z.
Wang
,
R.
Xu
,
J.
Yang
,
F.
Ye
 et al, “
Experimental investigation of Z-pinch radiation source for indirect drive inertial confinement fusion
,”
Matter Radiat. Extremes
4
,
046201
(
2019
).
3.
J.
Lindl
, “
Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain
,”
Phys. Plasmas
2
,
3933
(
1995
).
4.
L.
Caillabet
,
S.
Mazevet
, and
P.
Loubeyre
, “
Multiphase equation of state of hydrogen from ab initio calculations in the range 0.2 to 5 g/cc up to 10 eV
,”
Phys. Rev. B
83
,
094101
(
2011
).
5.
L.
Caillabet
,
B.
Canaud
,
G.
Salin
,
S.
Mazevet
, and
P.
Loubeyre
, “
Change in inertial confinement fusion implosions upon using an ab initio multiphase DT equation of state
,”
Phys. Rev. Lett.
107
,
115004
(
2011
).
6.
S. X.
Hu
,
B.
Militzer
,
V. N.
Goncharov
, and
S.
Skupsky
, “
First-principles equation-of-state table of deuterium for inertial confinement fusion applications
,”
Phys. Rev. B
84
,
224109
(
2011
).
7.
S. X.
Hu
,
L. A.
Collins
,
V. N.
Goncharov
,
J. D.
Kress
,
T. R.
Boehly
 et al, “
First-principles studies on the equation of state, thermal conductivity, and opacity of deuterium-tritium (DT) and polystyrene (CH) for inertial confinement fusion applications
,”
J. Phys.: Conf. Ser.
717
,
012064
(
2016
).
8.
J.
Danel
,
L.
Kazandjian
, and
R.
Piron
, “
Equation of state of warm dense deuterium and its isotopes from density-functional theory molecular dynamics
,”
Phys. Rev. E
93
,
043210
(
2016
).
9.
C.
Wang
and
P.
Zhang
, “
Wide range equation of state for fluid hydrogen from density functional theory
,”
Phys. Plasmas
20
,
092703
(
2013
).
10.
M. A.
Morales
,
L. X.
Benedict
,
D. S.
Clark
,
E.
Schwegler
,
I.
Tamblyn
 et al, “
Ab initio calculations of the equation of state of hydrogen in a regime relevant for inertial fusion applications
,”
High Energy Density Phys.
8
,
5
(
2012
).
11.
H.
Liu
,
G.
Zhang
,
Q.
Zhang
,
H.
Song
,
Q.
Li
 et al, “
Progress on equation of state of hydrogen and deuterium
,”
Chin. J. High Pressure Phys.
32
,
050101
(
2018
).
12.
J. A.
Gaffney
,
S. X.
Hu
,
P.
Arnault
,
A.
Becker
,
L. X.
Benedict
 et al, “
A review of equation-of-state models for inertial confinement fusion materials
,”
High Energy Density Phys.
28
,
7
(
2018
).
13.
S.
Faik
,
A.
Tauschwitz
, and
I.
Iosilevskiy
, “
The equation of state package FEOS for high energy density matter
,”
Comput. Phys. Commun.
227
,
117
(
2018
).
14.
W. J.
Nellis
, “
Dynamic compression of materials: Metallization of fluid hydrogen at high pressures
,”
Rep. Prog. Phys.
69
,
1479
(
2006
).
15.
G. V.
Boriskov
,
A. I.
Bykov
,
R.
Ilkaev
,
V. D.
Selemir
,
G. V.
Simakov
 et al, “
Shock compression of liquid deuterium up to 109 GPa
,”
Phys. Rev. B
71
,
092104
(
2005
).
16.
D. G.
Hicks
,
T. R.
Boehly
,
P. M.
Celliers
,
J. H.
Eggert
,
S. J.
Moon
 et al, “
Laser-driven single shock compression of fluid deuterium from 45 to 220 GPa
,”
Phys. Rev. B
79
,
014112
(
2009
).
17.
R.
Nora
,
W.
Theobald
,
R.
Betti
,
F. J.
Marshall
,
D. T.
Michel
 et al, “
Gigabar spherical shock generation on the OMEGA laser
,”
Phys. Rev. Lett.
114
,
045001
(
2015
).
18.
A.
Fernandez-Pañella
,
M.
Millot
,
D. E.
Fratanduono
,
M. P.
Desjarlais
,
S.
Hamel
 et al, “
Shock compression of liquid deuterium up to 1 TPa
,”
Phys. Rev. Lett.
122
,
255702
(
2019
).
19.
M. D.
Knudson
,
D. L.
Hanson
,
J. E.
Bailey
,
C. A.
Hall
,
J. R.
Asay
 et al, “
Principal hugoniot, reverberating wave, and mechanical reshock measurements of liquid deuterium to 400 GPa using plate impact techniques
,”
Phys. Rev. B
69
,
144209
(
2004
).
20.
M. D.
Knudson
,
M. P.
Desjarlais
,
A.
Becker
,
R. W.
Lemke
,
K. R.
Cochrance
 et al, “
Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium
,”
Science
348
,
1455
(
2015
).
21.
D.
Saumon
and
G.
Chabrier
, “
Fluid hydrogen at high density: Pressure ionization
,”
Phys. Rev. A
46
,
2084
(
1992
).
22.
F. J.
Rogers
, “
New activity expansion calculations for warm dense deuterium
,”
Contrib. Plasma Phys.
41
,
179
(
2001
).
23.
H.
Juranek
,
R.
Redmer
, and
Y.
Rosenfeld
, “
Fluid variational theory for pressure dissociation in dense hydrogen: Multicomponent reference system and nonadditivity effects
,”
J. Chem. Phys.
117
,
1768
(
2002
).
24.
V. K.
Gryaznov
,
I. L.
Iosilevskiy
, and
V. E.
Fortov
, “
Thermodynamics of hydrogen and helium plasmas in megabar and multi-megabar pressure range under strong shock and isentropic compression
,”
Plasma Phys. Controlled Fusion
58
,
014012
(
2016
).
25.
G. I.
Kerley
, “
Equation of state and phase diagram of dense hydrogen
,”
Phys. Earth Planet. Inter.
6
,
78
(
1972
).
26.
G. I.
Kerley
, Technical Report No. SAND2003-3613,
Sandia National Laboratory
,
Albuquerque, NM
,
2003
.
27.
Y.
Hou
,
F.
Jin
, and
J.
Yuan
, “
Influence of the electronic energy level broadening on the ionization of atoms in hot and dense plasmas: An average atom model demonstration
,”
Phys. Plasmas
13
,
093301
(
2006
).
28.
J.
Chihara
, “
Average atom model based on quantum hyper-netted chain method
,”
High Energy Density Phys.
19
,
38
(
2016
).
29.
Y.
Hou
and
J.
Yuan
, “
Alternative ion-ion pair-potential model applied to molecular dynamics simulations of hot and dense plasmas: Al and Fe as examples
,”
Phys. Rev. E
79
,
016402
(
2009
).
30.
S. X.
Hu
,
B.
Militzer
,
V. N.
Goncharov
, and
S.
Skupsky
, “
Strong coupling and degeneracy effects in inertial confinement fusion implosions
,”
Phys. Rev. Lett.
104
,
235003
(
2010
).
31.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
(
1964
).
32.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
(
1965
).
33.
N. D.
Mermin
, “
Thermal properties of the inhomogeneous electron gas
,”
Phys. Rev.
137
,
A1441
(
1965
).
34.
T. J.
Lenosky
,
S. R.
Bickham
,
J. D.
Kress
, and
L. A.
Collins
, “
Density-functional calculation of the Hugoniot of shocked liquid deuterium
,”
Phys. Rev. B
61
,
1
(
2000
).
35.
M. P.
Desjarlais
, “
Density-functional calculations of the liquid deuterium Hugoniot, reshock, and reverberation timing
,”
Phys. Rev. B
68
,
064204
(
2003
).
36.
B.
Holst
,
R.
Redmer
, and
M. P.
Desjarlais
, “
Thermophysical properties of warm dense hydrogen using quantum molecular dynamics simulations
,”
Phys. Rev. B
77
,
184201
(
2008
).
37.
B.
Militzer
and
D. M.
Ceperley
, “
Path integral Monte Carlo calculation of the deuterium Hugoniot
,”
Phys. Rev. Lett.
85
,
1890
(
2000
).
38.
K. P.
Driver
and
B.
Militzer
, “
All-electron path integral Monte Carlo simulations of warm dense matter: Application to water and carbon plasmas
,”
Phys. Rev. Lett.
108
,
115502
(
2012
).
39.
C.
Pierleoni
,
D. M.
Ceperley
, and
M.
Holzmann
, “
Coupled electron-ion Monte Carlo calculations of dense metallic hydrogen
,”
Phys. Rev. Lett.
93
,
146402
(
2004
).
40.
M. A.
Morales
,
C.
Pierleoni
, and
D. M.
Ceperley
, “
Equation of state of metallic hydrogen from coupled electron-ion Monte Carlo simulations
,”
Phys. Rev. E
81
,
021202
(
2010
).
41.
R. C.
Clay
 III
,
M. P.
Desjarlais
, and
L.
Shulenburger
, “
Deuterium Hugoniot: Pitfalls of thermodynamic sampling beyond density functional theory
,”
Phys. Rev. B
100
,
075103
(
2019
).
42.
F.
Lambert
,
J.
Clérouin
, and
G.
Zérah
, “
Very-high-temperature molecular dynamics
,”
Phys. Rev. E
73
,
016403
(
2006
).
43.
V. V.
Karasiev
,
T.
Sjostrom
, and
S. B.
Trickey
, “
Generalized-gradient-approximation noninteracting free-energy functionals for orbital-free density functional calculations
,”
Phys. Rev. B
86
,
115101
(
2012
).
44.
H. Y.
Sun
,
D.
Kang
,
Y.
Hou
, and
J. Y.
Dai
, “
Transport properties of warm and hot dense iron from orbital free and corrected Yukawa potential molecular dynamics
,”
Matter Radiat. Extremes
2
,
287
(
2017
).
45.
S.
Zhang
,
H.
Wang
,
W.
Kang
,
P.
Zhang
, and
X. T.
He
, “
Extended application of Kohn–Sham first-principles molecular dynamics method with plane wave approximation at high energyąłFrom cold materials to hot dense plasmas
,”
Phys. Plasmas
23
,
042707
(
2016
).
46.
J.
Dai
,
Y.
Hou
, and
J.
Yuan
, “
Unified first principles description from warm dense matter to ideal ionized gas plasma: Electron-ion collisions induced friction
,”
Phys. Rev. Lett.
104
,
245001
(
2010
).
47.
J.
Dai
and
J.
Yuan
, “
Large-scale efficient Langevin dynamics, and why it works
,”
Europhys. Lett.
88
,
20001
(
2009
).
48.
J.
Dai
,
Y.
Hou
, and
J.
Yuan
, “
Quantum Langevin molecular dynamic determination of the solar-interior equation of state
,”
Astrophys. J.
721
,
1158
(
2010
).
49.
J.
Dai
,
Y.
Hou
, and
J.
Yuan
, “
Influence of ordered structures on electrical conductivity and XANES from warm to hot dense matter
,”
High Energy Density Phys.
7
,
84
(
2011
).
50.
J.
Dai
,
D.
Kang
,
Z.
Zhao
,
Y.
Wu
, and
J.
Yuan
, “
Dynamic ionic clusters with flowing electron bubbles from warm to hot dense iron along the Hugoniot curve
,”
Phys. Rev. Lett.
109
,
175701
(
2012
).
51.
J.
Dai
,
Y.
Hou
,
D.
Kang
,
H.
Sun
,
J.
Wu
 et al, “
Structure, equation of state, diffusion and viscosity of warm dense Fe under the conditions of a giant planet core
,”
New J. Phys.
15
,
045003
(
2013
).
52.
D.
Kang
and
J.
Dai
, “
Dynamic electron–cion collisions and nuclear quantum effects in quantum simulation of warm dense matter
,”
J. Phys.: Condens. Matter
30
,
073002
(
2018
).
53.
A. V.
Plyukhin
, “
Generalized Fokker-Planck equation, Brownian motion, and ergodicity
,”
Phys. Rev. E
77
,
061136
(
2008
).
54.
R. G.
Gordon
and
Y. S.
Kim
, “
Theory for the forces between closed-shell atoms and molecules
,”
J. Chem. Phys.
56
,
3122
(
1972
).
55.
S.
Ichimaru
, “
Strongly coupled plasmas: High-density classical plasmas and degenerate electron liquids
,”
Rev. Mod. Phys.
54
,
1017
(
1982
).
56.
P.
Giannozzi
,
O.
Andreussi
,
T.
Brumme
,
O.
Bunau
,
M. B.
Nardelli
 et al, “
Advanced capabilities for materials modelling with quantum ESPRESSO
,”
J. Phys.: Condens. Matter
29
,
465901
(
2017
).
57.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
58.
R. P.
Feynman
,
N.
Metropolis
, and
E.
Teller
, “
Equations of state of elements based on the generalized Fermi-Thomas theory
,”
Phys. Rev.
75
,
1561
(
1949
).
59.
F.
Perrot
, “
Gradient correction to the statistical electronic free energy at nonzero temperatures: Application to equation-of-state calculations
,”
Phys. Rev. A
20
,
586
(
1979
).
60.
M.
Chen
,
X. C.
Huang
,
J. M.
Dieterich
,
L.
Hung
,
I.
Shin
 et al, “
Introducing PROFESS 3.0: An advanced program for orbital-free density functional theory molecular dynamics simulations
,”
Comput. Phys. Commun.
190
,
228
(
2015
).
61.
K.
Luo
,
V. V.
Karasiev
, and
S. B.
Trickey
, “
A simple generalized gradient approximation for the noninteracting kinetic energy density functional
,”
Phys. Rev. B
98
,
041111(R)
(
2018
).
62.
K.
Luo
,
V. V.
Karasiev
, and
S. B.
Trickey
, “
Towards accurate orbital-free simulations: A generalized gradient approximation for the noninteracting free energy density functional
,”
Phys. Rev. B
101
,
075116
(
2020
).
63.
V. A.
Baturin
,
W.
Däppen
,
A. V.
Oreshina
,
S. V.
Ayukov
, and
A. B.
Gorshkov
, “
Interpolation of equation-of-state data
,”
Astron. Astrophys.
626
,
A108
(
2019
).
64.
D.
Kang
,
H.
Sun
,
J.
Dai
,
W.
Chen
,
Z.
Zhao
 et al, “
Nuclear quantum dynamics in dense hydrogen
,”
Sci. Rep.
4
,
5484
(
2014
).
65.
B.
Lu
,
D.
Kang
,
D.
Wang
,
T.
Gao
, and
J.
Dai
, “
Towards the same line of liquid-liquid phase transition of dense hydrogen from various theoretical predictions
,”
Chin. Phys. Lett.
36
,
103102
(
2019
).
66.
D.
Kang
,
K.
Luo
,
K.
Runge
,
V. V.
Karasiev
, and
S. B.
Trickey
, “
Two-temperature warm dense hydrogen as a test of quantum protons driven by orbital-free density functional theory electronic forces
,”
Matter Radiat. Extremes
(in press) (
2020
).