Modern quantum technologies and hybrid quantum systems offer the opportunity to utilize magnons on the level of single excitations. Long lifetimes, low decoherence rates, and a strong coupling rate to other subsystems propose the ferrimagnet yttrium iron garnet (YIG), grown on a gadolinium gallium garnet (GGG) substrate, as a suitable platform to host magnonic quantum states. However, the magnetic damping at cryogenic temperatures significantly increases due to the paramagnetic character and the highly inhomogeneous stray field of GGG, as recent experiments and simulations pointed out. Here, we report on temperature dependent ferromagnetic resonance spectroscopy studies in YIG–GGG thin films with different sample geometries. We experimentally demonstrate how to eliminate the asymmetric stray field-induced linewidth broadening via microstructuring of the YIG film. Additionally, our experiments reveal evidence of a non-Gilbert-like behavior of the linewidth at cryogenic temperatures, independent of the inhomogeneous GGG stray field.

1.
A. V.
Chumak
,
P.
Kabos
,
M.
Wu
et al, “
Advances in magnetics roadmap on spin-wave computing
,”
IEEE Trans. Magn.
58
,
0800172
(
2022
).
2.
G.
Finocchio
,
J. A. C.
Incorvia
,
J. S.
Friedman
et al, “
Roadmap for unconventional computing with nanotechnology
,”
Nano Futures
8
,
012001
(
2024
).
3.
A.
Barman
,
G.
Gubbiotti
,
S.
Ladak
et al, “
The 2021 magnonics roadmap
,”
J. Phys.: Condens. Matter
33
,
413001
(
2021
).
4.
P.
Pirro
,
V. I.
Vasyuchka
,
A. A.
Serga
, and
B.
Hillebrands
, “
Advances in coherent magnonics
,”
Nat. Rev. Mater.
6
,
1114
(
2021
).
5.
A.
Mahmoud
,
F.
Ciubotaru
,
F.
Vanderveken
,
A. V.
Chumak
,
S.
Hamdioui
,
C.
Adelmann
, and
S.
Cotofana
, “
Introduction to spin wave computing
,”
J. Appl. Phys.
128
,
161101
(
2020
).
6.
N.
Zenbaa
,
C.
Abert
,
F.
Majcen
,
M.
Kerber
,
R. O.
Serha
,
S.
Knauer
,
Q.
Wang
,
T.
Schrefl
,
D.
Suess
, and
A. V.
Chumak
, “
A universal inverse-design magnonic device
,”
Nat. Electron.
8
,
106
(
2025
).
7.
N.
Zenbaa
,
F.
Majcen
,
C.
Abert
,
F.
Bruckner
,
N.
Mauser
,
T.
Schrefl
,
Q.
Wang
,
D.
Suess
, and
A. V.
Chumak
, Realization of inverse-design magnonic logic gates, arXiv (
2024
), arXiv:2411.17546.
8.
Q.
Wang
,
R.
Verba
,
B.
Heinz
,
M.
Schneider
,
O.
Wojewoda
,
K.
Davídková
,
K.
Levchenko
,
C.
Dubs
,
N. J.
Mauser
,
M.
Urbánek
,
P.
Pirro
, and
A. V.
Chumak
, “
Deeply nonlinear excitation of self-normalized short spin waves
,”
Sci. Adv.
9
,
eadg4609
(
2023
).
9.
B.
Heinz
,
T.
Brächer
,
M.
Schneider
,
Q.
Wang
,
B.
Lägel
,
A. M.
Friedel
,
D.
Breitbach
,
S.
Steinert
,
T.
Meyer
,
M.
Kewenig
,
C.
Dubs
,
P.
Pirro
, and
A. V.
Chumak
, “
Propagation of spin-wave packets in individual nanosized yttrium iron garnet magnonic conduits
,”
Nano Lett.
20
,
4220
(
2020
).
10.
K. O.
Levchenko
,
K.
Davidkova
,
J.
Mikkelsen
, and
A. V.
Chumak
, “
Review on spin-wave rf applications
,” arXiv (
2024
), arXiv:2411.19212.
11.
Q.
Wang
,
R.
Verba
,
K.
Davídková
,
B.
Heinz
,
S.
Tian
,
Y.
Rao
,
M.
Guo
,
X.
Guo
,
C.
Dubs
,
P.
Pirro
, and
A. V.
Chumak
, “
All-magnonic repeater based on bistability
,”
Nat. Commun.
15
,
7577
(
2024
).
12.
F.
Heussner
,
G.
Talmelli
,
M.
Geilen
,
B.
Heinz
,
T.
Brächer
,
T.
Meyer
,
F.
Ciubotaru
,
C.
Adelmann
,
K.
Yamamoto
,
A. A.
Serga
,
B.
Hillebrands
, and
P.
Pirro
, “
Experimental realization of a passive gigahertz frequency-division demultiplexer for magnonic logic networks
,”
Phys. Status Solidi RRL
14
,
1900695
(
2020
).
13.
K.
Vogt
,
F. Y.
Fradin
,
J. E.
Pearson
,
T.
Sebastian
,
S. D.
Bader
,
B.
Hillebrands
,
A.
Hoffmann
, and
H.
Schultheiss
, “
Realization of a spin-wave multiplexer
,”
Nat. Commun.
5
,
3727
(
2014
).
14.
X.
Zhang
, “
A review of common materials for hybrid quantum magnonics
,”
Mater. Today Electron.
5
,
100044
(
2023
).
15.
Z.
Jiang
,
J.
Lim
,
Y.
Li
,
W.
Pfaff
,
T. H.
Lo
,
J.
Qian
,
A.
Schleife
,
J. M.
Zuo
,
V.
Novosad
, and
A.
Hoffmann
, “
Integrating magnons for quantum information
,”
Appl. Phys. Lett.
123
,
130501
(
2023
).
16.
Y.
Li
,
W.
Zhang
,
V.
Tyberkevych
,
W. K.
Kwok
,
A.
Hoffmann
, and
V.
Novosad
, “
Hybrid magnonics: Physics, circuits, and applications for coherent information processing
,”
J. Appl. Phys.
128
,
130902
(
2020
).
17.
D.
Lachance-Quirion
,
Y.
Tabuchi
,
A.
Gloppe
,
K.
Usami
, and
Y.
Nakamura
, “
Hybrid quantum systems based on magnonics
,”
Appl. Phys. Express
12
,
070101
(
2019
).
18.
A. A.
Serga
,
A. V.
Chumak
, and
B.
Hillebrands
, “
YIG magnonics
,”
J. Phys. D Appl. Phys.
43
,
264002
(
2010
).
19.
R.
LeCraw
,
E.
Spencer
, and
C. S.
Porter
, “
Ferromagnetic resonance line width in yttrium iron garnet single crystals
,”
Phys. Rev.
10
,
1311
(
1958
).
20.
V.
Cherepanov
,
I.
Kolokolov
, and
V.
L’vov
, “
The saga of YIG: Spectra, thermodynamics, interaction and relaxation of magnons in a complex magnet
,”
Phys. Rep.
229
,
81
(
1993
).
21.
J.
Adam
, “
Analog signal processing with microwave magnetics
,”
Proc. IEEE
76
,
159
(
1988
).
22.
H.
Glass
, “
Ferrite films for microwave and millimeter-wave devices
,”
Proc. IEEE
76
,
151
(
1988
).
23.
W.
Ishak
, “
Magnetostatic wave technology: A review
,”
Proc. IEEE
76
,
171
(
1988
).
24.
F.
Morgenthaler
, “
An overview of electromagnetic and spin angular momentum mechanical waves in ferrite media
,”
Proc. IEEE
76
,
138
(
1988
).
25.
G.
Rodrigue
, “
A generation of microwave ferrite devices
,”
Proc. IEEE
76
,
121
(
1988
).
26.
Y.
Cao
,
P.
Yan
,
H.
Huebl
,
S. T.
Goennenwein
, and
G. E.
Bauer
, “
Exchange magnon-polaritons in microwave cavities
,”
Phys. Rev. B
91
,
094423
(
2015
).
27.
C.
Dubs
,
O.
Surzhenko
,
R.
Linke
,
A.
Danilewsky
,
U.
Brückner
, and
D.
Jan
, “
Sub-micrometer yttrium iron garnet LPE films with low ferromagnetic resonance losses
,”
J. Phys. D: Appl. Phys.
50
,
204005
(
2017
).
28.
R. O.
Serha
,
A. A.
Voronov
,
D.
Schmoll
,
R.
Verba
,
K. O.
Levchenko
,
S.
Koraltan
,
K.
Davídková
,
B.
Budinská
,
Q.
Wang
,
O. V.
Dobrovolskiy
,
M.
Urbánek
,
M.
Lindner
,
T.
Reimann
,
C.
Dubs
,
C.
Gonzalez-Ballestero
,
C.
Abert
,
D.
Suess
,
D. A.
Bozhko
, and
S.
Knauer
, and
A. V.
Chumak
, “
Magnetic anisotropy and GGG substrate stray field in YIG films down to millikelvin temperatures
,”
npj Spintronics
2
,
29
(
2024
).
29.
S.
Kosen
,
A. F. V.
Loo
,
D. A.
Bozhko
,
L.
Mihalceanu
, and
A. D.
Karenowska
, “
Microwave magnon damping in YIG films at millikelvin temperatures
,”
APL Mater.
7
,
101120
(
2019
).
30.
R. O.
Serha
,
A. A.
Voronov
,
D.
Schmoll
,
R.
Klingbeil
,
S.
Knauer
,
S.
Koraltan
,
E.
Pribytova
,
M.
Lindner
,
T.
Reimann
,
C.
Dubs
,
C.
Abert
,
R.
Verba
,
M.
Urbánek
,
D.
Suess
, and
A. V.
Chumak
, “
Damping enhancement in YIG at millikelvin temperatures due to GGG substrate
,”
Mater. Today Quant.
5
,
100025
(
2025
).
31.
D.
Schmoll
,
A. A.
Voronov
,
R. O.
Serha
,
D.
Slobodianiuk
,
K. O.
Levchenko
,
C.
Abert
,
S.
Knauer
,
D.
Suess
,
R.
Verba
, and
A. V.
Chumak
, “
Wavenumber-dependent magnetic losses in yttrium iron garnet–gadolinium gallium garnet heterostructures at millikelvin temperatures
,”
Phys. Rev. B
111
,
134428
(
2025
).
32.
S.
Knauer
,
K.
Davídková
,
D.
Schmoll
,
R. O.
Serha
,
A.
Voronov
,
Q.
Wang
,
R.
Verba
,
O. V.
Dobrovolskiy
,
M.
Lindner
,
T.
Reimann
,
C.
Dubs
,
M.
Urbánek
, and
A. V.
Chumak
, “
Propagating spin-wave spectroscopy in a liquid-phase epitaxial nanometer-thick YIG film at millikelvin temperatures
,”
J. Appl. Phys.
133
,
143905
(
2023
).
33.
A.
Herrera-Gomez
,
D. M.
Guzman-Bucio
,
A. J.
Carmona-Carmona
,
O.
Cortazar-Martinez
,
M.
Mayorga-Garay
,
D.
Cabrera-German
,
C. A.
Ospina-Ocampo
,
B. V.
Crist
, and
J.
Raboño-Borbolla
, “
Double lorentzian lineshape for asymmetric peaks in photoelectron spectroscopy
,”
J. Vac. Sci. Technol. A
41
,
043208
(
2023
).
34.
S. S.
Kalarickal
,
P.
Krivosik
,
M.
Wu
,
C. E.
Patton
,
M. L.
Schneider
,
P.
Kabos
,
T. J.
Silva
, and
J. P.
Nibarger
, “
Ferromagnetic resonance linewidth in metallic thin films: Comparison of measurement methods
,”
J. Appl. Phys.
99
,
093909
(
2006
).
You do not currently have access to this content.