Conformers of butyric acid were studied using matrix isolation infrared absorption spectroscopy combined with quantum chemical calculations. The results of Møller–Plesset perturbation theory (MP2) calculations indicate that the most stable conformer of butyric acid is the one with a nonplanar aliphatic chain, which is in contradiction with the B3LYP results, predicting the most stable conformer to have the aliphatic chain in one plane. Infrared absorption spectra of butyric acid isolated in argon and neon matrices have complicated band structures, suggesting the existence of multiple structural forms of butyric acid trapped in the matrices. The application of MP2 anharmonic calculations has enabled a precise assignment of spectral bands. The importance of Fermi resonance and the need for anharmonic calculations for the correct assignment of C  = O stretch vibrations of butyric acid are demonstrated. Comparison between the calculated and experimental spectra led to the conclusion that three conformers are trapped in argon and neon matrices. The conformer with the aliphatic chain in one plane TTT, along with the nonplanar ones namely G± TT, were found to coexist in similar amounts isolated in noble gas matrices.

1.
I.
Goldberg
and
J. S.
Rokem
,
Organic and Fatty Acid Production, Microbial, Encyclopedia of Microbiology
(Third Edition) (
Elsevier Science
,
Amsterdam
,
2009
), p.
421
.
2.
Bioprocessing for Value-Added Products From Renewable Resources: New Technologies and Applications
, edited by,
S.-T.
Yang
(
Elsevier Science
,
Amsterdam
,
2007
), Chap. 16.
3.
R.
Niederman
,
J.
Zhang
, and
S.
Kashket
, “
Short-chain carboxylic-acid-stimulated, PMN-mediated gingival inflammation
,”
Crit. Rev. Oral Biol. Med.
8
,
269
(
1997
).
4.
L.
Liu
,
Y.
Zhu
,
J.
Li
,
M.
Wang
,
P.
Lee
,
G.
Du
, and
J.
Chen
, “
Microbial production of propionic acid from propionibacteria: Current state, challenges and perspectives
,”
Crit. Rev. Biotechnol.
32
,
374
(
2012
).
5.
M.
Dwidar
,
J.-Y.
Park
,
R. J.
Mitchell
, and
B.-I.
Sang
, “
The future of butyric acid in industry
,”
Sci. World J.
2012
,
471417
(
2012
).
6.
Z. X.
Chen
and
T. R.
Breitman
, “
Tributyrin: A prodrug of butyric acid for potential clinical application in differentiation therapy
,”
Cancer Res.
54
,
3494
(
1994
).
7.
J.
Leavitt
,
J. C.
Barrett
,
B. D.
Crawford
, and
P. O. P.
Ts’o
, “
Butyric acid suppression of the in vitro neoplastic state of Syrian hamster cells
,”
Nature
271
,
262
(
1978
).
8.
A.
Rephaeli
,
R.
Zhuk
, and
A.
Nudelman
, “
Prodrugs of butyric acid from bench to bedside: Synthetic design, mechanisms of action, and clinical applications
,”
Drug Dev. Res.
50
,
379
(
2000
).
9.
E. M. S.
Maçôas
,
L.
Khriachtchev
,
M.
Pettersson
,
R.
Fausto
, and
M.
Räsänen
, “
Rotational isomerism in acetic acid: The first experimental observation of the high-energy conformer
,”
J. Am. Chem. Soc.
125
,
16188
(
2003
).
10.
W. H.
Hocking
, “
The other rotamer of formic acid, cis-HCOOH
,”
Z. Naturforsch. A
31
,
1113
(
1976
).
11.
E. M. S.
Maçôas
,
L.
Khriachtchev
,
M.
Pettersson
,
R.
Fausto
, and
M.
Räsänen
, “
Internal rotation in propionic acid: Near-infrared-induced isomerization in solid argon
,”
J. Phys. Chem. A
109
,
3617
(
2005
).
12.
E. D.
Becker
and
G. C.
Pimentel
, “
Spectroscopic studies of reactive molecules by the matrix isolation method
,”
J. Chem. Phys.
25
,
224
(
1956
).
13.
G. K.
Moortgat
,
A. J.
Barnes
,
G. L.
Bras
, and
J. R.
Sodeau
,
Low-Temperature Chemistry of the Atmosphere
(
Springer Science and Business Media
,
2011
).
14.
Physics and Chemistry at Low Temperatures
, edited by,
L.
Khriachtchev
(
Jenny Stanford Publishing
,
New York
,
2019
).
15.
M.
Pettersson
,
J.
Lundell
,
L.
Khriachtchev
, and
M.
Räsänen
, “
IR spectrum of the other rotamer of formic acid, cis-HCOOH
,”
J. Am. Chem. Soc.
119
,
11715
(
1997
).
16.
S.
Lopes
,
R.
Fausto
, and
L.
Khriachtchev
, “
Formic acid in deuterium and hydrogen matrices
,”
Mol. Phys.
117
,
1708
(
2019
).
17.
L. O.
Paulson
and
D. T.
Anderson
, “
High-resolution vibrational spectroscopy of trans-formic acid in solid parahydrogen
,”
J. Phys. Chem. A
113
,
1770
(
2009
).
18.
E. M. S.
Maçôas
,
L.
Khriachtchev
,
M.
Pettersson
,
J.
Juselius
,
R.
Fausto
, and
M.
Räsänen
, “
Reactive vibrational excitation spectroscopy of formic acid in solid argon: Quantum yield for infrared induced trans→cis isomerization and solid state effects on the vibrational spectrum
,”
J. Chem. Phys.
119
,
11765
(
2003
).
19.
S.
Lopes
,
A. V.
Domanskaya
,
R.
Fausto
,
M.
Räsänen
, and
L.
Khriachtchev
, “
Formic and acetic acids in a nitrogen matrix: Enhanced stability of the higher-energy conformer
,”
J. Chem. Phys.
133
,
144507
(
2010
).
20.
V.
Sablinskas
,
M.
Pucetaite
,
J.
Ceponkus
, and
L.
Kimtys
, “
Structure of propanoic acid dimers as studied by means of MIR and FIR spectroscopy
,”
J. Mol. Struct.
976
,
263
(
2010
).
21.
W.
Sander
and
M.
Gantenberg
, “
Aggregation of acetic and propionic acid in argon matrices — A matrix isolation and computational study
,”
Spectrochim. Acta. A. Mol. Biomol. Spectrosc.
62
,
902
(
2005
).
22.
J.
Mačytė
,
V.
Šablinskas
, and
J.
Čeponkus
, “
Conformers of valeric acid: Matrix isolation infrared spectroscopy study
,”
Fiz. Nizk. Temp.
50
,
854
(
2024
) [
Low Temp. Phys.
50, 766 (2024)].
23.
Gaussian 16, Revision C.01
,
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
(
Gaussian, Inc.
,
Wallingford CT
,
2019
).
24.
W. J.
Hehre
, “
Ab initio molecular orbital theory
,”
Acc. Chem. Res.
9
,
399
(
1976
).
25.
J. P.
Merrick
,
D.
Moran
, and
L.
Radom
, “
An evaluation of harmonic vibrational frequency scale factors
,”
J. Phys. Chem. A
111
,
11683
(
2007
).
26.
P.
Sinha
,
S. E.
Boesch
,
C.
Gu
,
R. A.
Wheeler
, and
A. K.
Wilson
, “
Harmonic vibrational frequencies: Scaling factors for HF, B3LYP, and MP2 methods in combination with correlation consistent basis sets
,”
J. Phys. Chem. A
108
,
9213
(
2004
).
27.
T. L.
Fischer
,
M.
Bödecker
,
S. M.
Schweer
et al., “
The first HyDRA challenge for computational vibrational spectroscopy
,”
Phys. Chem. Chem. Phys.
25
,
22089
(
2023
).
28.
R. B.
Gerber
,
B.
Brauer
,
S. K.
Gregurick
, and
G. M.
Chaban
, “
Calculation of anharmonic vibrational spectroscopy of small biological molecules
,”
Phys. Chem. Comm.
5
,
142
(
2002
).
29.
A.
Nejad
,
E.
Meyer
, and
M. A.
Suhm
, “
Glycolic acid as a vibrational anharmonicity benchmark
,”
J. Phys. Chem. Lett.
11
,
5228
(
2020
).
30.
T. K.
Brunck
and
F.
Weinhold
, “
Quantum-mechanical studies on the origin of barriers to internal rotation about single bonds
,”
J. Am. Chem. Soc.
101
,
1700
(
1979
).
31.
S.
Wolfe
, “
Gauche effect. stereochemical consequences of adjacent electron pairs and polar bonds
,”
Acc. Chem. Res.
5
,
102
(
1972
).
32.
J.
Kaminsky
,
R. A.
Mata
,
H.-J.
Werner
, and
F.
Jensen
, “
The accuracy of local MP2 methods for conformational energies
,”
Mol. Phys.
106
,
1899
(
2008
).
33.
Y.
Zhou
,
J.
Wu
, and
X.
Xu
, “
How well can B3LYP heats of formation be improved by dispersion correction models?
,”
Theor. Chem. Acc.
135
,
44
(
2016
).
34.
I.
Cukrowski
, “
Reliability of HF/IQA, B3LYP/IQA, and MP2/IQA data in interpreting the nature and strength of interactions
,”
Phys. Chem. Chem. Phys.
21
,
10244
(
2019
).
35.
J.
Čeponkus
,
D.
Leščiūtė
,
D.
Čepulinskaitė
,
M.
Pučetaitė
, and
V.
Šablinskas
, “
Association of water and small monocarboxylic acids: Matrix isolation FTIR spectrometry study
,”
Lith. J. Phys.
49
,
53
(
2009
).
You do not currently have access to this content.