We studied luminescence accompanied by an injection of nitrogen–krypton–helium gas mixtures after passing radiofrequency discharge into dense cold helium gas. In the cold helium gas N2–Kr nanoclusters were formed, with a core of Kr atoms and N2 molecules on the surface. Atomic nitrogen and oxygen resided in the N2 surface layers. When the temperature in the observation zone was in the range of 20–36 K, we observed enhanced emission of oxygen atom β-group and molecular nitrogen Vegard–Kaplan bands from N2–Kr nanoclusters. At these temperatures, nitrogen atoms efficiently recombine on the surface of nanoclusters with the formation of exited nitrogen molecules, leading to enhanced emission of Vegard–Kaplan bands. Simultaneously, the energy transfer from exited nitrogen molecules to the oxygen atoms enhanced O atom β-group emission.

1.
E. B.
Gordon
,
L. P.
Mezhov-Deglin
, and
O. F.
Pugachev
,
JETP Lett.
19
,
63
(
1974
).
2.
E. B.
Gordon
,
L. P.
Mezhov-Deglin
,
O. F.
Pugachev
, and
V. V.
Khmelenko
,
Cryogenics
16
,
555
(
1976
).
3.
E. B.
Gordon
,
V. V.
Khmelenko
,
A. E.
Popov
,
A. A.
Pelmenev
, and
O. F.
Pugachev
,
Chem. Phys. Lett.
155
,
301
(
1989
).
4.
E. A.
Popov
,
J.
Eloranta
,
J.
Ahokas
, and
H.
Kunttu
,
Fiz. Nizk. Temp.
29
,
684
(
2003
) [
Low Temp. Phys.
29, 510 (2003)].
5.
S. I.
Kiselev
,
V.V.
Khmelenko
, and
D. M.
Lee
,
Fiz. Nizk. Temp.
26
,
874
(
2000
) [
Low Temp. Phys.
26, 641 (2000)].
6.
S. I.
Kiselev
,
V. V.
Khmelenko
,
D. M.
Lee
,
V.
Kiryukhin
,
R. E.
Boltnev
,
E. B.
Gordon
, and
B.
Keimer
,
Phys. Rev. B
65
,
024517
(
2002
).
7.
V.
Kiryukhin
,
B.
Keimer
,
R. E.
Boltnev
,
V. V.
Khmelenko
, and
E. B.
Gordon
,
Phys. Rev. Lett.
79
,
1774
(
1997
).
8.
V.
Kiryukhin
,
E. P.
Bernard
,
V. V.
Khmelenko
,
R. E.
Boltnev
,
N. V.
Krainyukova
, and
D. M.
Lee
,
Phys. Rev. Lett.
98
,
195506
(
2007
).
9.
S. I.
Kiselev
,
V. V.
Khmelenko
,
D. A.
Geller
,
D. M.
Lee
, and
J. R.
Beamish
,
J. Low Temp. Phys.
119
,
357
(
2000
).
10.
S. I.
Kiselev
,
V. V.
Khmelenko
,
D. A.
Geller
,
J. R.
Beamish
, and
D. M.
Lee
,
Physica B
284–288
,
105
(
2000
).
11.
S. I.
Kiselev
,
V. V.
Khmelenko
, and
D. M.
Lee
,
J. Low Temp. Phys.
121
,
671
(
2000
).
12.
E. B.
Gordon
,
A. A.
Pelmenev
,
O. F.
Pugachev
,
V. L.
Talroze
, and
V. V.
Khmelenko
,
Doklady Physical Chemistry
280
,
145
(
1985
).
13.
E. P.
Bernard
,
R. E.
Boltnev
,
V. V.
Khmelenko
, and
D. M.
Lee
,
J. Low Temp. Phys.
134
,
199
(
2004
).
14.
R. E.
Boltnev
,
I. N.
Krushinskaya
,
A. A.
Pelmenev
,
E. A.
Popov
,
D. Y.
Stolyarov
, and
V. V.
Khmelenko
,
Fiz. Nizk. Temp.
31
,
723
(
2005
) [
Low Temp. Phys.
31, 547 (2005)].
15.
S.
Mao
,
R. E.
Boltnev
,
V. V.
Khmelenko
, and
D. M.
Lee
,
Fiz. Nizk. Temp.
38
,
1313
(
2012
) [
Low Temp. Phys.
38, 1037 (2012)].
16.
C. K.
Wetzel
,
D. M.
Lee
, and
V. V.
Khmelenko
,
J. Low Temp. Phys.
215
,
294
(
2024
).
17.
C. K.
Wetzel
,
D. M.
Lee
, and
V. V.
Khmelenko
,
J. Low Temp. Phys.
, published online (
2024
).
18.
E. B.
Gordon
,
A. A.
Pelmenev
,
O. F.
Pugachev
, and
V. V.
Khmelenko
,
Chem. Phys.
61
,
35
(
1981
).
19.
O.
Korostyshevskyi
,
C. K.
Wetzel
,
D. M.
Lee
, and
V. V.
Khmelenko
,
Fiz. Nizk. Temp.
50
,
806
(
2024
) [
Low Temp. Phys.
50, 722 (2024)].
20.
K.
Dressler
,
O.
Oehler
, and
D. A.
Smith
,
Phys. Rev. Lett.
34
,
1364
(
1974
).
21.
A. M.
Bass
and
H. P.
Broida
,
Formation and Trapping of Free Radicals
(
Academic Press
,
New York
,
1960
).
22.
K.
Takizawa
,
A.
Takami
, and
S.
Koda
,
J. Phys. Chem. A
104
,
3693
(
2000
).
23.
R. E.
Boltnev
,
E. P.
Bernard
,
J.
Järvinen
,
V. V.
Khmelenko
, and
D. M.
Lee
,
Phys. Rev. B
79
,
180506(R)
(
2009
).
24.
R. E.
Boltnev
,
V. V.
Khmelenko
, and
D. M.
Lee
,
Fiz. Nizk. Temp.
36
,
484
(
2010
) [
Low Temp. Phys.
36, 382 (2010)].
25.
A.
Meraki
,
S.
Mao
,
P. T.
McColgan
,
R. E.
Boltnev
,
D. M.
Lee
, and
V. V.
Khmelenko
,
J. Low Temp. Phys.
185
,
269
(
2016
).
26.
H.-C.
Lu
,
J.-I.
Lo
,
Y.-C.
Peng
,
S.-L.
Chou
,
M.-Y.
Lin
, and
B.-M.
Cheng
,
Astrophys. J.
832
,
25
(
2016
).
27.
D. S.
Tinti
and
G. W.
Robinson
,
J. Chem. Phys.
49
,
3229
(
1968
).
28.
V. V.
Khmelenko
,
S.
Mao
,
A.
Meraki
,
S. C.
Wilde
,
P. T.
McColgan
,
A. A.
Pelmenev
,
R. E.
Boltnev
, and
M.
Lee
,
Phys. Rev. Lett.
111
,
183002
(
2013
).
29.
E. A.
Popov
,
J.
Ahokas
,
J.
Eloranta
, and
H.
Kunttu
,
AIP Conf. Proc.
850
,
384
(
2006
).
30.
V. V.
Khmelenko
,
S.
Mao
,
A.
Meraki
,
S.
Wilde
,
P.
McColgan
,
A. A.
Pelmenev
,
R. E.
Boltnev
, and
D. M.
Lee
,
J. Phys. Conf. Ser.
568
,
032010
(
2014
).
31.
R. E.
Boltnev
,
V. M.
Atrazhev
,
N.
Bonifaci
,
I. B.
Bykhalo
,
I. N.
Krushinskaya
,
V. V.
Khmelenko
,
D. M.
Lee
,
A. A.
Pelmenev
,
S.
Sheludiakov
, and
N.
Sadeghi
,
Plasma Sources Sci. Technol.
30
,
075032
(
2021
).
32.
O. P.
Konotop
and
O. G.
Danylchenko
,
Fiz. Nizk. Temp.
49
,
233
(
2023
) [
Low Temp. Phys.
49, 216 (2023)].
33.
N. V.
Krainyukova
,
R. E.
Boltnev
,
E. P.
Bernard
,
V. V.
Khmelenko
,
D. M.
Lee
, and
V.
Kiryukhin
,
Phys. Rev. Lett.
109
,
245505
(
2012
).
34.
A.
Meraki
,
P. T.
McColgan
,
R. E.
Boltnev
,
D. M.
Lee
, and
V. V.
Khmelenko
,
J. Low Temp. Phys.
192
,
224
(
2018
).
35.
R. E.
Boltnev
,
E. B.
Gordon
,
V. V.
Khmelenko
,
M. V.
Martynenko
,
A. A.
Pelmenev
,
E. A.
Popov
, and
A. F.
Shestakov
,
J. Chim. Phys.
92
,
362
(
1995
).
36.
R. E.
Boltnev
,
I. N.
Krushinskaya
,
A. A.
Pelmenev
,
D. Y.
Stolyarov
, and
V. V.
Khmelenko
,
Chem. Phys. Lett.
305
,
217
(
1999
).
37.
V. V.
Khmelenko
,
I. N.
Krushinskaya
,
R. E.
Boltnev
,
I. B.
Bykhalo
,
A. A.
Pelmenev
, and
D. M.
Lee
,
J. Low Temp. Phys.
38
,
871
(
2012
).
38.
V. V.
Khmelenko
,
A. A.
Pelmenev
,
I. N.
Krushinskaya
,
I. B.
Bykhalo
,
R. E.
Boltnev
, and
D. M.
Lee
,
J. Low Temp. Phys.
171
,
302
(
2013
).
39.
P. T.
McColgan
,
A.
Meraki
,
R. E.
Boltnev
,
D. M.
Lee
, and
V. V.
Khmelenko
,
J. Phys. Chem. A
121
,
9045
(
2017
).
40.
M.
Chergui
,
N.
Schwentner
, and
A.
Tramer
,
Chem. Phys. Lett.
201
,
187
(
1993
).
You do not currently have access to this content.