The ISIS neutron and muon source undertakes approximately 100 experiments per year at temperatures below 1 K. At these temperatures, there is a clear need for accurate, precise, and well-calibrated thermometry, which is resilient to the challenging sample environments found in large science facilities. In this work, we look to improve the use of low temperature resistive sensors in the high-throughput environment of an operational large-scale facility. By installing the MFFT-1 SQUID thermometer into a dilution refrigerator, we were able to create a methodology for the rapid calibration of cheap commercial resistors. This provision also enables us to characterize the behavior of both SQUID and resistance-based thermometers in the extreme environments found at neutron and muon sources. Lastly, we use these tools to understand the effect of “beam heating” upon samples placed in our neutron instruments.

1.
A.
Schröder
,
G.
Aeppli
,
R.
Coldea
,
M.
Adams
,
O.
Stockert
,
H. v
.
Löhneysen
,
E.
Bucher
,
R.
Ramazashvili
, and
P.
Coleman
, “
Onset of antiferromagnetism in heavy-fermion metals
,”
Nature
407
,
351
(
2000
).
2.
O.
Kirichek
,
C. R.
Lawson
,
C. J.
Kinane
,
A. J.
Caruana
,
S.
Langridge
,
T. R.
Charlton
, and
P. V. E.
McClintock
, “
Density profile of 3He in a nanoscale 3He–4He superfluid film determined by neutron scattering
,”
Commun. Phys
.
7
,
181
(
2024
).
3.
A. D.
Hillier
,
S. J.
Blundell
,
I.
McKenzie
,
I.
Umegaki
,
L.
Shu
,
J. A.
Wright
,
T.
Prokscha
,
F.
Bert
,
K.
Shimomura
,
A.
Berlie
,
H.
Alberto
, and
I.
Watanabe
, “
Muon spin spectroscopy
,”
Nat. Rev. Methods Primers
2
,
4
(
2022
).
4.
V.
Datskov
,
L.
Petrova
,
Z.
Bunzarov
,
J.
Demko
, and
S.
Augustinowicz
, “
Long-life cryogenic thermometry in particle accelerators and other demanding applications
,”
IEEE Transactions on Applied Superconductivity
10
,
1403
(
2000
).
5.
M.
Watanabe
,
M.
Morishita
, and
Y.
Ootuka
, “
Magnetoresistance of RuO2-based resistance thermometers below 0.3 K
,”
Cryogenics
41
,
143
(
2001
).
7.
A.
Casey
,
B. P.
Cowan
,
H.
Dyball
,
J.
Li
,
C. P.
Lusher
,
V.
Maidanov
,
J.
Nyéki
,
J.
Saunders
, and
Dm.
Shvarts
, “
Current-sensing noise thermometry from 4.2 K to below 1 mK using a DC SQUID preamplifier
,”
Physica B: Condens. Matter
329–333
,
1556
(
2003
).
8.
O.
Kirichek
and
R. B. E.
Down
,
Ultra-low temperature sample environment for neutron scattering experiments
, in:
Recent Progress in Neutron Scattering Research
, edited by
A.
Vidal
and
M
Carrizo
(
NOVA Science Publishers
,
New York
2013
), p.
133
.
10.
K.
Guckelsberger
, Beam heating in low temperature experiments on 3He and 3He-4He mixtures, ILL Lab. Report 7.43 (
1993
).
11.
O.
Kirichek
,
C. R.
Lawson
,
D. M.
Jenkins
,
C. J. T.
Ridley
, and
D. J.
Haynes
, “
Solid methane in neutron radiation: Cryogenic moderators and cometary cryo volcanism
,”
Cryogenics
88
,
101
(
2017
).
12.
N.
Samkharadze
,
A.
Kumar
, and
G. A.
Csáthy
, “
A new type of carbon resistance thermometer with excellent thermal contact at millikelvin temperatures
,”
J. Low Temp. Phys.
160
,
246
(
2010
).
13.
J. E.
Robichaux
, Jr.
, and
A. C.
Anderson
, “
Modified speer resistors for use as low temperature thermometers
,”
Rev. Sci. Instrum.
40
,
1512
(
1969
).
14.
W. C.
Black
, Jr.
,
W. R.
Roach
, and
J. C.
Wheatley
, “
Speer carbon resistors as thermometers for use below 1 K
,”
Rev. Sci. Instrum
.
35
,
587
(
1964
).
15.
J.
Sanchez
,
A.
Benoit
, and
J.
Flouquet
, “
Speer carbon resistance thermometer magnetoresistance effect
,”
Rev. Sci. Instrum.
48
,
1090
(
1977
).
16.
J. C. P.
Klaasse
,
I. H.
Hagmusa
, and
E.
Brück
, “
Improved sample-holder design for specific-heat measurements in magnetic fields up to 17.5 T
,”
Rev. Sci. Instrum
.
68
,
4208
(
1997
).
You do not currently have access to this content.