The review highlights, analyzes, and summarizes the results of experimental and theoretical study of the general laws and specific features of low-temperature inelastic deformation of a new class of materials, namely, high-entropy alloys (HEAs). The results of a ten-year experimental study of the patterns of acoustic relaxation and the initial stage of plastic deformation of one of the typical representatives of high-entropy alloys—the six-component Al0.5CoCrCuFeNi alloy are described in detail under conditions of moderate (from 300 to 77 K), strong (from 77 to 4.2 K) and deep (from 4.2 to 0.5 K) cooling. In experiments, the temperature dependences of the dynamic moduli of elasticity and internal friction, as well as the main characteristics of the deformation diagrams of polycrystalline samples of the alloy with an fcc atomic structure of grains and a complex morphology of wide grain boundaries, were obtained. The connection between the experimentally recorded features of acoustic and plastic deformation of the alloy and the features of the dynamics and kinetics of elementary dislocation processes in grains and grain boundaries is discussed. At low temperatures, when thermally activated excitation of structural rearrangements in grain boundaries is exponentially weakened, the inelastic deformation of HEAs polycrystals is determined by the nucleation and motion of dislocation-type lattice defects in planes of easy intragrained slip. Analysis and physical interpretation of these processes based on modern dislocation theory made it possible to establish the following: the most important types of defects in the lattice structure of the alloy; types of barriers that prevent the motion of dislocations inside the grains during low-temperature deformation; adequate mechanisms of thermally activated dislocation motion over the barriers at low temperatures; quantitative estimates for the most important characteristics of dislocations and their interaction with barriers.

1.
J. W.
Yeh
,
S. K.
Chen
,
S. J.
Lin
,
J. Y.
Gan
,
T. S.
Chin
,
T. T.
Shun
,
C. H.
Tsau
, and
S. Y.
Chang
, “
Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes
,”
Adv. Eng. Mater.
6
,
299
(
2004
).
2.
B.
Cantor
,
I. T. H.
Chang
,
P.
Knight
, and
A. J. B.
Vincent
, “
Microstructural development in equi-atomic multicomponent alloys
,”
Mater. Sci. Eng. A
375–377
,
213
(
2004
).
3.
Y.
Zhang
,
Y. J.
Zhou
,
J. P.
Lin
, and
G. L.
Chen
, and
Pe
ter K.
Liaw
, “
Solid-solution phase formation rules for multi-component alloys
,”
Adv. Eng. Mater.
10
,
534
(
2008
).
4.
D. A.
Porter
and
K. E.
Easterling
,
Phase Transformations in Metals and Alloys
(
Chapman and Hall
,
London
,
1992
).
5.
E. P.
George
,
D.
Raabe
, and
R. O.
Ritchie
, “
High-entropy alloys
,”
Nat. Rev. Mater.
4
,
515
(
2019
).
6.
Y.
Zhang
,
T. T.
Zuo
,
Z.
Tang
,
M. C.
Gao
,
K. A.
Dahmen
,
P. K.
Liaw
, and
Z. P.
Lu
, “
Microstructures and properties of high-entropy alloys
,”
Prog. Mater. Sci.
61
,
1
(
2014
).
7.
A. D.
Pogrebnjak
,
I. V.
Yakushchenko
,
A. A.
Bagdasaryan
,
O. V.
Bondar
,
R.
Krause-Rehberg
,
G.
Abadias
,
P.
Chartier
,
K.
Oyoshi
,
Y.
Takeda
,
V. M.
Beresnev
, and
O. V.
Sobol
, “
Microstructure, physical and chemical properties of nanostructured (Ti–Hf–Zr–V–Nb) N coatings under different deposition conditions
,”
Mater. Chem. Phys.
147
,
1079
(
2014
).
8.
A. D.
Pogrebnjak
,
A. A.
Bagdasaryan
,
I. V.
Yakushchenko
, and
V. M.
Beresnev
, “
The structure and properties of high-entropy alloys and nitride coatings based on the
,”
Russ. Chem. Rev.
83
,
1027
(
2014
).
9.
M. H.
Tsai
and
J. W.
Yeh
, “
High-entropy alloys: A critical review
,”
Mater. Res. Lett.
2
,
107
(
2014
).
10.
A.
Gali
and
E. P.
George
, “
Tensile properties of high- and medium-entropy alloys
,”
Intermetallics
39
,
74
(
2013
).
11.
G. A.
Salishchev
,
M. A.
Tikhonovsky
,
D. G.
Shaysultanov
,
N. D.
Stepanov
,
A. V.
Kuznetsov
,
I. V.
Kolodiy
,
A. S.
Tortika
, and
O. N.
Senkov
, “
Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system
,”
J. Alloys Compd.
591
,
11
(
2014
).
12.
S. A.
Firstov
,
V. F.
Gorban
,
N. A.
Krapivka
,
N. I.
Danilenko
, and
V. N.
Nazarenko
, “
The influence of plastic deformation on the structure and properties of high-entropy alloys
,”
Probl. Atom. Sci. Tech.
96
,
178
(
2015
).
13.
M. V.
Ivchenko
,
V. G.
Pushin
, and
N.
Wanderka
, “
High-entropy equiatomic AlCrFeCoNiCu alloy: Hypotheses and experimental data
,”
Tech. Phys.
59
,
211
(
2014
).
14.
Chun
Ng
,
Sheng
Guo
,
Junhua
Luan
,
Sanqiang
Shi
, and
C. T.
Liu
, “
Entropy-driven phase stability and slow diffusion kinetics in an Al0.5CoCrCuFeNi high entropy alloy
,”
Intermetallics
31
,
165
(
2012
).
15.
N. G.
Jones
,
A.
Frezza
, and
H. J.
Stone
, “
Phase equilibria of an Al0.5CrFeCoNiCu high entropy alloy
,”
Mater. Sci. Eng. A
615
,
214
(
2014
).
16.
F.
Otto
,
A.
Dlouhy
,
C.
Somsen
,
H.
Bei
,
G.
Eggeler
, and
E. P.
George
, “
The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy
,”
Acta Mater.
61
,
5743
(
2013
).
17.
Che-Wei
Tsai
,
Ming-Hung
Tsai
,
Jien-Wei
Yeh
, and
Chih-Chao
Yang
, “
Effect of temperature on mechanical properties of Al0.5CoCrCuFeNi wrought alloy
,”
J. Alloys Compd.
490
,
160
(
2010
).
18.
E. J.
Pickering
,
H. J.
Stone
, and
N. G.
Jones
, “
Fine-scale precipitation in the high-entropy alloy Al0.5CrFeCoNiCu
,”
Mater. Sci. Eng. A
645
,
65
(
2015
).
19.
M. O.
Laktionova
,
O. D.
Tabachnikova
,
Z.
Tang
, and
P. K.
Liaw
, “
Mechanical properties of the high-entropy alloy Al0.5CoCrCuFeNi at temperatures of 4.2–300 K
,”
Fiz. Nizk. Temp.
39
,
814
(
2013
) [
Low Temp. Phys.
39, 630 (2013)].
20.
Yu. O.
Semerenko
,
O. D.
Tabachnikova
,
T. M.
Tikhonovska
,
I. V.
Kolodiy
,
O. S.
Tortika
,
S. E.
Shumilin
, and
M. O.
Laktionova
, “
Temperature dependence of the acoustic and mechanical properties of cast and annealed high-entropy Al0.5CoCuCrNiFe alloy
,”
Metallofiz. Noveishie Tekhnol.
37
,
1527
(
2015
).
21.
E. D.
Tabachnikova
,
M. A.
Laktionova
,
Yu. A.
Semerenko
,
S. E.
Shumilin
,
A. V.
Podolskiy
,
M. A.
Tikhonovsky
,
J.
Miskuf
, and
K.
Csach
, “
Mechanical properties of Al0.5CoCrCuFeNi high entropy alloy in different structural states in temperature range 0.5–300 K
,”
Fiz. Nizk. Temp.
43
,
1381
(
2017
) [
Low Temp. Phys.
43, 1108 (2017)].
22.
Yu. A.
Semerenko
and
V. D.
Natsik
, “
Low temperature peak of internal friction in high entropy Al0.5CoCrCuFeNi alloy
,”
Fiz. Nizk. Temp.
46
,
92
(
2020
) [
Low Temp. Phys.
46, 78 (2020)].
23.
O. S.
Bulatov
,
V. F.
Dolzhenko
,
V. S.
Klochko
,
A. V.
Korniyets
,
I. V.
Kolodiy
,
T. Yu.
Rudycheva
,
M. A.
Tikhonovsky
, and
O. S.
Tortika
, “
Low-temperature acoustic properties of a high-entropy alloy Al0.5CoCrCuFeNi
,” in
Proc. of Int. Conf. “HighMatTech-2013
,”
Kyiv
(
2013
).
24.
O. S.
Bulatov
,
V. S.
Klochko
,
A. V.
Korniyets
,
I. V.
Kolodiy
,
O. O.
Kondratov
, and
T. M.
Tikhonovska
, “
Low temperature elastic properties of Al0.5CoCrCuFeNi high-entropy alloy
,”
Funct. Mater.
28
,
492
(
2021
).
25.
X.
Guo
,
X.
Xie
,
J.
Ren
,
M.
Laktionova
,
E.
Tabachnikova
,
L.
Yu
,
Wing-Sum
Cheung
,
K. A.
Dahmen
, and
Peter K.
Liaw
, “
Plastic dynamics of the Al0.5CoCrCuFeNi high entropy alloy at cryogenic temperatures: Jerky flow, stair-like fluctuation, scaling behavior, and non-chaotic state
,”
Appl. Phys. Lett.
111
,
251905
(
2017
).
26.
Y. O.
Semerenko
,
V. D.
Natsik
,
E. D.
Tabachnikova
,
Y.
Huang
, and
T. G.
Langdon
, “
Mechanisms of low-temperature dislocation motion in high-entropy Al0.5CoCrCuFeNi alloy
,”
Metals
14
,
778
(
2024
).
27.
E. D.
Tabachnikova
,
Yu. O.
Shapovalov
,
S. N.
Smirnov
,
V. F.
Gorban’
,
N. A.
Krapivka
, and
S. A.
Firstov
, “
Low-temperature mechanical properties and thermally activated plasticity parameters of the CrMnFeCoNi2Cu high entropy alloy
,”
Fiz. Nizk. Temp.
46
,
1131
(
2020
) [
Low Temp. Phys.
46, 958 (2020)].
28.
A. V.
Podolskiy
,
E.
Schafler
,
E. D.
Tabachnikova
,
M. A.
Tikhonovsky
, and
M. J.
Zehetbauer
, “
Thermally activated deformation of nanocrystalline and coarse grained CoCrFeNiMn high entropy alloy in the temperature range 4.2–350 K
,”
Fiz. Nizk. Temp.
44
,
1245
(
2018
) [
Low Temp. Phys.
44, 976 (2018)].
29.
Yu. A.
Semerenko
, “
Interfacing the instrumental GPIB with a personal computer through the LPT port
,”
Instrum. Exp. Tech.
48
,
608
(
2005
).
30.
V. D.
Natsik
and
Yu. A.
Semerenko
, “
Dislocation mechanisms of low-temperature acoustic relaxation in iron
,”
Fiz. Nizk. Temp.
45
,
644
(
2019
) [
Low Temp. Phys.
45, 551 (2019)].
31.
Philip M.
Morse
,
Vibration and Sound
(
McGraw-Hill Book Company, Inc
.,
New York
,
1936
), 351 pp.
32.
G.
Leibfried
,
“Gittertheorie der mechanischen und thermischen eigenschaften der kristalle
,” in
Handbuch der Physik
(
Springer
,
Berlin
,
1955
), Vol. 7/1.
33.
Y. P.
Varshni
, “
Temperature dependence of the elastic constants
,”
Phys. Rev. B
2
,
3952
(
1970
).
34.
L. A.
Girifalco
,
Statistical Physics of Materials
(
John Wiley and Sons
,
New York
,
1973
).
35.
B. I.
Shapoval
and
V. M.
Arzhavitin
,
Mechanisms of High-Temperature Background Internal Friction of Metals
(
TsNIIAtominform
,
Moskow
,
1988
).
36.
G.
Schoeck
,
E.
Bisogni
, and
J.
Shyne
, “
The activation energy of high temperature internal friction
,”
Acta Metall.
12
,
1466
(
1964
).
37.
V. D.
Natsik
and
Yu. A.
Semerenko
, “
Dislocation mechanisms of low-temperature internal friction in nanostructured materials
,”
Fiz. Nizk. Temp.
42
,
185
(
2016
) [
Low Temp. Phys.
42, 138 (2016)].
38.
S.
Asgari
,
E.
El-Danaf
,
S. R.
Kalidindi
, and
R. D.
Doherty
, “
Strain hardening regimes and microstructural evolution during large strain compression of low stacking fault energy fcc alloys that form deformation twins
,”
Metall. Mater. Trans. A
28
,
1781
(
1997
).
39.
A.
Evans
and
R.
Rawlings
, “
The thermally activated deformation of crystalline materials
,”
Phys. Status Solidi
34
,
9
(
1969
).
40.
D. H.
Niblett
,
Bordoni Peak in Face-Centered Cubic Metals, in: Physical Acoustics
, edited by
W. P.
Mason
(
Academic Press
,
New York
,
1964
), Vol. III, Part А.
41.
R.
Chambers
, “
Dislocation relaxations in base-centered cubic transition metals
,” in
Physical Acoustics
, edited by
W. P.
Mason
(
Academic Press
,
New York
,
1964
), Vol. III, Part А.
42.
P. G.
Bordoni
, “
Elastic and anelastic behavior of some metals at very low temperatures
,”
J. Acoust. Soc. Amer.
26
,
495
(
1954
).
43.
V. S.
Postnikov
,
Internal Friction in Metals and Alloys
(
Springer
,
New York
,
1967
).
44.
A.
Seeger
, “
On the theory of the low-temperature internal friction peak observed in metals
,”
Philos. Mag.
1
,
651
(
1956
).
45.
A.
Seeger
and
P.
Schiller
,
“Kinks in dislocation lines and theit effects on the internal friction in crystals
,” in
Physical Acoustics
, edited by
W. P.
Mason
(
Academic Press
,
New York
,
1964
), Vol. III, Part А.
46.
A.
Seeger
and
C.
Wüthrich
, “
Dislocation relaxation processes in body-centred cubic metals
,”
Nuovo Cimento B
33
,
38
(
1976
).
47.
J.
Friedel
,
Dislocation
(
Pergamon
,
London
,
1964
).
48.
P. M.
Anderson
,
J. P.
Hirth
, and
J.
Lothe
,
Theory of Dislocations
(
Cambridge University Press
,
2017
).
49.
V. D.
Natsik
,
P. P.
Pal-Val
,
L. N.
Pal-Val
, and
Y. A.
Semerenko
, “
Effect of plastic deformation on the shape and parameters of the low-temperature peak of internal friction in niobium
,”
Fiz. Nizk. Temp.
25
,
748
(
1999
) [
Low Temp. Phys.
25, 558 (1999)].
50.
V. D.
Natsik
,
P. P.
Pal-Val
,
L. N.
Pal-Val
, and
Y. A.
Semerenko
, “
Statistical analysis of the low-temperature α peak of the internal friction in iron single crystals
,”
Fiz. Nizk. Temp.
26
,
711
(
2000
) [
Low Temp. Phys.
26, 522 (2000)].
51.
V. D.
Natsik
,
P. P.
Pal-Val
,
L. N.
Pal-Val
, and
Y. A.
Semerenko
, “
Low-temperature α peak of the internal friction in niobium and its relation to the relaxation of kinks in dislocations
,”
Fiz. Nizk. Temp.
27
,
547
(
2001
) [
Low Temp. Phys.
27, 404 (2001)].
52.
Yu. A.
Semerenko
, “
Low-temperature viscoelastic relaxation in PMA polyimide (Kapton)
,”
Funct. Mater.
26
,
319
(
2019
).
53.
M.
Koiwa
and
R.R.
Hasiguti
, “
A theory of internal friction peak due to thermal unpinning of dislocations and its application to P1 peak in copper
,”
Acta Met.
13
,
1219
(
1965
).
54.
A. S.
Novick
and
B. S.
Berry
,
Anelastic Relaxation in Crystalline Solids
(
Academic Press
,
New York
,
1972
).
55.
S. P.
Fitzgerald
, “
Kink pair production and dislocation motion
,”
Sci. Rep.
6
,
39708
(
2016
).
56.
D.
Utt
,
S.
Lee
,
Y.
Xing
,
H.
Jeong
,
A.
Stukowski
,
S.
Ho Oh
,
G.
Dehm
, and
K.
Albe
, “
The origin of jerky dislocation motion in high-entropy alloys
,”
Nat. Commun.
13
,
4777
(
2022
).
57.
V. V.
Pustovalov
and
V. S.
Fomenko
,
Plastic Deformation of Crystals at Low Temperatures
(
Naukova Dumka
,
Kyiv
,
2012
).
58.
V. N.
Kovaleva
,
V. A.
Moskalenko
, and
V. D.
Natsik
, “
Barrier parameters and statistic controlling the plasticity of Ti–O solid solutions in the temperature range 20–550 K
,”
Philos. Mag. A
70
,
423
(
1994
).
59.
V. A.
Moskalenko
,
V. D.
Natsik
, and
V. N.
Kovaleva
, “
The role of peierls relief in the low-temperature plasticity of pure α-Ti
,”
Fiz. Nizk. Temp.
31
,
1190
(
2005
) [
Low Temp. Phys.
31, 907 (2005)].
60.
U. F.
Kocks
,
A. S.
Argon
, and
M. F.
Ashby
,
“Thermodynamics and kinetics of slip
,” in Progress in Materials Science, edited by B. Chalmers, J. W. Christian, and T. B. Massalski (
Pergamon Press
,
Oxford
,
1975
), Vol. 19.
61.
R. B.
Schwarz
,
R. D.
Isaac
, and
A. V.
Granato
, “
Dislocation inertial effects in the plastic deformation of dilute alloys of lead and copper
,”
Phys. Rew. Lett.
38
,
554
(
1977
).
62.
N. V.
Isaev
,
V. D.
Natsik
,
V. V.
Pustovalov
,
V. S.
Fomenko
, and
S. E.
Shumilin
, “
Low-temperature plasticity of Pb–Bi alloys: The role of thermal activation and inertial effects
,”
Fiz. Nizk. Temp.
24
,
786
(
1998
) [
Low Temp. Phys.
24, 593 (1998)].
63.
B.
Schwarz
and
R.
Labusch
, “
Dynamic simulation of solution hardening
,”
J. Appl. Phys.
49
,
5174
(
1978
).
You do not currently have access to this content.