The paper analyzes the effect of nanoadditives of zirconium dioxide, partially stabilized by Y2O3, on the Al2O3–SiO2 matrix during hot pressing by the electroconsolidation method. The microstructure obtained at different compositions and sintering modes is studied. It was established that the introduction of nanopowder ZrO2–3 mol % Y2O3 increases the crack resistance of sintered samples not only due to the transformation of the tetragonal phase to the monoclinic phase, but also due to the formation of a solid solution with aluminum oxide at the interphase boundaries. Starting from a temperature of 1400 °C, complete densification occurs with the formation of nonporous composites while preserving the nanostructure. At this temperature, the formation of mullite with cristobalite phases also begins. The high value of thermocycles makes it possible to use this composite material as a cryogenic one. The fabrication of mullite-corundum composites with additions of ZrO2–3 mol % Y2O3 nanopowders via the method of electrosolidification has enabled the attainment of high fracture toughness, K1C = 14.5 MPa⋅m1/2, and hardness HV10 = 14 GPa. These results evidence excellent mechanical properties, thereby expanding the potential applications of this material.

1.
F. J.
Klug
,
S.
Prochazka
, and
R. H.
Doremus
, “
Alumina-silica phase diagram in the mollite region
,”
J. Am. Ceram. Soc.
70
,
750
(
1987
).
2.
V.
Vorob’eva
,
A.
Zelenaya
,
V.
Lutsyk
,
V.
Vorozhtcov
,
V.
Almjashev
,
T.
Sokolova
, and
V.
Stolyarova
, “
Modeling of the ZrO2-SiO2-Al2O3 phase diagram using simulation by the 3D computer model and the NUCLEA database
,”
Mater. Sci. Eng. B
297
,
116790
(
2023
).
3.
G.
Feng
,
W.
Jiang
,
J.
Liu
,
C.
Li
,
Q.
Zhang
,
L.
Miao
, and
Q.
Wu
, “
Novel nonaqueous precipitation synthesis of alumina powders
,”
Ceram. Intern.
43
,
13461
(
2017
).
4.
A. G.
Mamalis
,
V. P.
Nerubatskyi
,
E. S.
Gevorkyan
,
M. V.
Kislitsa
, and
D. A.
Hordiienko
, “
Study of the cutting properties of a composite material based on Al2O3 with 15 wt% SiC nanopowders
,”
Nanotech. Percept.
19
,
68
(
2023
).
5.
J.
Fang
,
B.
Yan
, and
T.
Deng
, “
Fast transformation of andalusite into mullite by addition of yttria Transformación rápida de andalucita en mullita por la adición de itria
,”
Bol. Soc. Españ. Cerám. Vidrio
58
,
142
(
2019
).
6.
M.
Ju
,
M.
Cai
,
J.
Nie
,
Y.
Liang
, and
M.
Guo
, “
Advanced Al2O3–SiC–SiO2–C refractories with B2O3 addition
,”
Ceram. Intern.
47
,
29525
(
2021
).
7.
W.
Yuan
,
Q.
Zhu
,
C.
Deng
, and
H.
Zhu
, “
The effect of the glass phase on the modulus of rupture of high-alumina refractories
,”
J. Ceram. Sci. Techn.
6
,
215
(
2015
).
8.
E.
Bartonickova
,
P.
Ptacek
,
T.
Opravil
,
F.
Soukal
,
J.
Masilko
,
R.
Novotny
,
J.
Svec
, and
J.
Havlica
, “
Mullite-based refractories fabricated by foam casting
,”
Ceram. Intern.
41
,
14116
(
2015
).
9.
T.
Chotard
,
L.
Arbelaez Morales
,
M.-L.
Bouchetou
, and
J.
Poirier
, “
Thermomechanical characterisation of mullite zirconia composites sintered from andalusite for high temperature applications
,”
Ceramics
2
,
587
(
2019
).
10.
L.
Nevřivová
, and
D.
Zemánek
, “
Study of the mineralogical composition of an alumina–silica binder system formed by the sol–gel method
,”
Materials
16
,
5466
(
2023
).
11.
J. O.
Agunsoye
,
S. A.
Bello
,
A. A.
Bamigbaiye
,
K. A.
Odunmosu
, and
I. O.
Akinboye
, “
Recycled ceramic composite for automobile brake pad application
,”
J. Res. Phys.
39
,
35
(
2018
).
12.
A. P.
Irawan
,
D. F.
Fitriyana
,
C.
Tezara
,
J. P.
Siregar
,
D.
Laksmidewi
,
G. D.
Baskara
,
M. Z.
Abdullah
,
R.
Junid
,
A. E.
Hadi
,
M. H. M.
Hamdan
, and
N.
Najid
, “
Overview of the important factors influencing the performance of eco-friendly brake pads
,”
Polymers
14
,
1180
(
2022
).
13.
E.
Gevorkyan
,
M.
Rucki
,
Z.
Krzysiak
,
V.
Chishkala
,
W.
Zurowski
,
W.
Kucharczyk
,
V.
Barsamyan
,
V.
Nerubatskyi
,
T.
Mazur
,
D.
Morozow
,
Z.
Siemiątkowski
, and
J.
Caban
, “
Analysis of the electroconsolidation process of fine-dispersed structures out of hot pressed Al2O3–WC nanopowders
,”
Materials
14
,
6503
(
2021
).
14.
A. G.
Mamalis
,
E. S.
Gevorkyan
,
M. M.
Prokopiv
,
V. P.
Nerubatskyi
,
D. A.
Hordiienko
,
D.
Morozow
, and
O. V.
Kharchenko
, “
Peculiarities of the formation of the structure of CMCs based on Al2O3 micropowder and SiC nanopowder in the process of electrosintering
,”
Nanotechn. Percept.
19
,
39
(
2023
).
15.
H.
Schneider
,
J.
Scheruer
, and
B.
Hildmann
, “
Structure and properties of mullite—A review
,”
J. Europ. Ceram. Soc.
28
,
329
(
2008
).
16.
C.
Aksel
, “
The effect of mullite on the mechanical properties and thermal shock behavior of alumina–mullite refractory materials
,”
Ceram. Intern.
29
,
183
(
2003
).
17.
Pat. 72841 Ukraine, IPC
(
2012
.01) B22F 3/00, Device for Hot Pressing of Powders by Direct Transmission of Electric Current, M. O. Azerenkov, E. S. Gevorkyan, S. V. Lytovchenko, V. O. Chishkala, L. A. Timofeeva, O. M. Melnyk, and Y. G. Gutsalenko; applicant and patentee E. S. Gevorkian; No. u201203031; application for application for examination of applications for industrial inventions filed on 15.03.12; published on 27.08.2012, Bul. No. 16.
18.
V. Y.
Kodash
and
E. S.
Gevorkyan
, Tungsten Curbide Cutting Tool Materials, C04B35/36, United States Patent No. 6,617,271, 09.09.2003.
19.
M.
Kramer
,
V.
Kodash
, and
E.
Gevorkyan
, Tungsten curbide cutting tool materials, C04B35/36, International Patent WO 2005/023729 A1, 17.03.2005.
20.
I.
Radko
and
M.
Marhon
, “
Features of research of grip strength composite materials contact with electrical worn parts
,”
Mach. Energ.
252
,
176
(
2016
).
21.
A. G.
Mamalis
,
E. S.
Hevorkian
,
V. P.
Nerybatskyi
,
M.
Rucki
,
Z.
Krzysiak
, and
O. M.
Morozova
, “
Effect of nanoadditives on the properties of partially stabilized zirconia
,”
Nanotech. Percept.
19
,
26
(
2023
).
22.
E.
Gevorkyan
,
V.
Nerubatskyi
,
V.
Chyshkala
,
Y.
Gutsalenko
, and
O.
Morozova
, “
Determining the influence of ultra-dispersed aluminum nitride impurities on the structure and physical-mechanical properties of tool ceramics
,”
Eastern-European J. Enterprise Techn.
6
,
40
(
2021
).
23.
G. D.
Quinn
,
Fracture toughness of ceramics by the vickers indentation crack length method: A critical review
, in:
Mechanical Properties and Performance of Engineering Ceramics II: Ceramic Engineering and Science Proceedings
, edited by
R.
Tandon
,
A.
Wereszczak
, and
E.
Lara-Curzio
,
27
(American Ceramic Society,
2006
).
24.
E.
Gevorkyan
,
L.
Cepova
,
M.
Rucki
,
V.
Nerubatskyi
,
D.
Morozow
,
W.
Zurowski
,
V.
Barsamyan
, and
K.
Kouril
, “
Activated sintering of Cr2O3-based composites by hot pressing
,”
Materials
15
,
5960
(
2022
).
25.
C.
Schlumberger
,
C.
Scherdel
,
M.
Kriesten
,
P.
Leicht
,
A.
Keilbach
,
H.
Ehmann
,
P.
Kotnik
,
G.
Reichenauer
, and
M.
Thommes
, “
Reliable surface area determination of powders and meso/macroporous materials: Small-angle X-ray scattering and gas physisorption
,”
Micropor. Mesopor. Mater.
329
,
111554
(
2022
).
26.
S. N.
Naik
, and
S. M.
Walley
, “
The Hall–petch and inverse Hall–petch relations and the hardness of nanocrystalline metals
,”
J. Mater. Sci.
55
,
2661
(
2020
).
27.
A. I.
Raichenko
, “
Some features of electro sintering of powders
,”
Powder Metallurgy
8
,
27
(
1979
).
28.
E. Z.
Lajtai
, “
A theoretical and experimental evaluation of the griffith theory of brittle fracture
,”
Tectonophys.
11
,
129
(
1971
).
29.
E.
Gevorkyan
,
V.
Nerubatskyi
,
Yu.
Gutsalenko
,
O.
Melnik
, and
L.
Voloshyna
, “
Examination of patterns in obtaining porous structures from submicron aluminum oxide powder and its mixtures
,”
Eastern-European J. Enterprise Techn.
6
,
41
(
2020
).
30.
E.
Gevorkyan
,
M.
Rucki
,
T.
Sałaciński
,
Z.
Siemiątkowski
,
V.
Nerubatskyi
,
W.
Kucharczyk
,
Ja.
Chrzanowski
,
Yu.
Gutsalenko
, and
M.
Nejman
, “
Feasibility of cobalt-free nanostructured WC cutting inserts for machining of a TiC/Fe composite
,”
Materials
14
,
3432
(
2021
).
31.
V. P.
Nerubatskyi
,
R. V.
Vovk
,
E. S.
Gevorkyan
,
D. A.
Hordiienko
,
Z. F.
Nazyrov
, and
H. L.
Komarova
, “
Investigation of phase and structural states in nanocrystalline powders based on zirconium dioxide
,”
Fiz. Nyzk. Temp.
49
,
1404
(
2023
) [
Low Temp. Phys.
49, 1277 (2023)].
32.
S. C.
Tjong
, and
H.
Chen
, “
Nanocrystalline materials and coatings
,”
Mater. Sci. Eng. R: Reports
45
,
1
(
2004
).
33.
F. A.
Mohamed
, “
Deformation mechanism maps for micro-grained, ultrafine-grained, and nano-grained materials
,”
Mater. Sci. Eng. A
528
,
1431
(
2011
).
34.
F. R. N.
Nabarro
,
Deformation of Crystals by the Motion of Single Lonsin Report of a Conference on the Strength of Solids (Bristol, U.K.), Physical Society
,
London
,
75
90
(
1948
).
35.
C.
Herring
, “
Diffusional viscosity of a polycrystalline solid,
J. Appl. Phys.
21
,
437
(
1950
).
36.
R. L.
Coble
, “
A model for boundary diffusion controlled creep in polycrystalline materials,
J. Appl. Phys.
34
,
1679
(
1963
).
37.
F. A.
Mohamed
, and
Y.
Li
, “
Creep and superplasticity in nanocrystalline materials: Current understanding and future prospects
,”
Mater. Sci. Eng. A
298
,
1
(
2001
).
38.
Z.
Li
,
Y.
Dong
,
S.
Li
,
L.
Xu
, and
J.
Sun
, “
Electromigration-induced coble creep in polycrystalline materials
,”
Appl. Phys. Lett.
91
,
191902
(
2007
).
39.
W. J.
Kim
, “
On coble creep in Mg–9Al–1Zn alloy with ultrafine-grained microstructure
,”
Scripta Mater.
58
,
659
(
2008
).
40.
G. W.
Nieman
,
J. R.
Weertman
, and
R. W.
Siegel
, “
Mechanical behavior of nanocrystalline Cu and Pd
,”
J. Mater. Res.
6
,
1012
(
1991
).
41.
J. Y.
Zhang
,
Z. D.
Sha
,
P. S.
Branicio
,
Y. W.
Zhang
,
V.
Sorkin
,
Q. X.
Pei
, and
D. J.
Srolovitz
, “
Superplastic nanocrystalline ceramics at room temperature and high strain rates
,”
Scripta Materialia
69
,
525
(
2013
).
42.
J.
Karch
,
R.
Birringer
, and
H.
Gleiter
, “
Ceramics ductile at low temperature
,”
Nature
330
,
556
(
1987
).
43.
H. J.
Höfler
and
R. S.
Averback
, “
Grain growth in nanocrystalline TiO2 and its relation to vickers hardness and fracture toughness
,”
Scripta Metallurg. Materalia
24
,
2401
(
1990
).
44.
M. J.
Mayo
,
R. W.
Siegel
,
A.
Narayanasamy
, and
W. D.
Nix
, “
Mechanical properties of nanophase TiO2 as determined by nanoindentation
,”
J. Mater. Res.
5
,
1073
(
1990
).
45.
P.
Palmero
, “
Structural ceramic nanocomposites: A review of properties and powders’ synthesis methods
,”
Nanomater.
5
,
656
(
2015
).
46.
J.
Li
and
Y.
Ye
, “
Densification and grain growth of Al2O3 nanoceramics during pressureless sintering
,”
J. Am. Ceram. Soc.
89
,
139
(
2006
).
47.
W. A.
Smit
and
G.
Vertogen
, “
Zener theory
,”
Phys. Rev. B
4
,
2249
(
1971
).
48.
O.
Lame
,
D.
Bouvard
, and
H.
Wiedemann
, “
Anisotropic shrinkage and gravity-induced creep during sintering of steel powder compacts
,”
Powder Metallurg.
45
,
181
(
2002
).
49.
N.
Ryum
,
O.
Hunderi
, and
E.
Nes
, “
On grain boundary drag from second phase particles
,”
Scripta Metallurg.
17
,
1281
(
1983
).
50.
P. R.
Rios
and
G. S.
Fonseca
, “
Grain boundary curvature and particle pinning in an Al–1mass%Mn alloy
,”
Scripta Materialia
50
,
1373
(
2004
).
51.
Z. Z.
Fang
,
H.
Wang
, and
V.
Kumar
, “
Coarsening, densification, and grain growth during sintering of nano-sized powders – A perspective
,”
Intern. J. Refract. Metals Hard Mater. B
62
,
110
(
2017
).
52.
E. S.
Hevorkian
,
V. P.
Nerubatskyi
,
R. V.
Vovk
,
T.
Szumiata
, and
J. N.
Latosińska
, “
Foamy ceramic filters and new possibilities of their applications
,”
Ceram. Intern.
50
,
6961
(
2023
).
53.
L.
Pizzagalli
and
M.-L.
David
, “
Surface stress calculations for nanoparticles and cavities in aluminum, silicon, and iron: Influence of pressure and validity of the young-laplace equation
,”
Mater. Theory
5
,
5
(
2021
).
54.
D. A.
Porter
and
K. E.
Easterling
,
Phase Transformations in Metals and Alloys
, 2nd ed. (
Springer-Science + Business Media, B.V.
,
1992
).
55.
J. D.
Hansen
,
R. P.
Rusin
,
M. H.
Teng
, and
D. L.
Johnson
, “
Combined-stage sintering model
,”
J. Am. Ceram. Soc.
75
,
1129
(
1992
).
56.
E. S.
Gevorkyan
,
V. P.
Nerubatskyi
,
R. V.
Vovk
,
V. O.
Chyshkala
,
S. V.
Lytovchenko
,
O. M.
Morozova
, and
J. N.
Latosińska
, “
Features of synthesis of Y2Ti2O7 ceramics for the purpose of obtaining dispersion-strengthened steels
,”
Acta Phys. Polonica A
142
,
529
(
2022
).
57.
V. O.
Chyshkala
,
S. V.
Lytovchenko
,
V. P.
Nerubatskyi
,
R. V.
Vovk
,
E. S.
Gevorkyan
, and
O. M.
Morozova
, “
Detection of regularities of Y2Zr2O7 pyrochlor phase formation during the reaction of solid-phase synthesis under different temperature-time conditions
,”
Funct. Mater.
29
,
30
(
2022
).
58.
U.
Sutharsini
,
M.
Thanihaichelvan
, and
R.
Singh
, “
Two-step sintering of ceramics
,” in book:
Sinter. Functional Materials
,
3
(
2018
), Ch. 1.
59.
N. J.
Lóh
,
L.
Simão
,
C. A.
Faller
,
A.
De Noni Jr
, and
O. R. K.
Montedo
, “
A review of two-step sintering for ceramics
,”
Ceram. Intern.
42
,
12556
(
2016
).
60.
E. S.
Gevorkyan
,
M.
Rucki
,
A. A.
Kagramanyan
, and
V. P.
Nerubatskiy
, “
Composite material for instrumental applications based on micro powder Al2O3 with additives nano-powder SiC
,”
Intern. J. Refract. Metals Hard Mater.
82
,
336
(
2019
).
61.
E.
Gevorkyan
,
A.
Mamalis
,
R.
Vovk
,
Z.
Semiatkowski
,
D.
Morozow
,
V.
Nerubatskyi
, and
O.
Morozova
, “
Special features of manufacturing cutting inserts from nanocomposite material Al2O3–SiC
,”
J. Instrum.
16
,
P10015
(
2021
).
62.
V. P.
Nerubatskyi
,
R. V.
Vovk
,
M.
Gzik-Szumiata
, and
E. S.
Gevorkyan
, “
Investigation of the effect of silicon carbide nanoadditives on the structure and properties of microfine corundum during electroconsolidation
,”
Fiz. Nyzk. Temp.
49
,
540
(
2023
) [
Low Temp. Phys.
49, 498 (2023)].
63.
E. S.
Gevorkyan
,
V. P.
Nerubatskyi
,
R. V.
Vovk
,
V. O.
Chyshkala
, and
M. V.
Kislitsa
, “
Structure formation in silicon carbide – alumina composites during electroconsolidation
,”
J. Superhard Mater.
44
,
339
(
2022
).
64.
M. A.
Lourenço
,
G. G.
Cunto
,
F. M.
Figueiredo
, and
J. R.
Frade
, “
Model of two-step sintering conditions for yttria-substituted zirconia powders
,”
Mater. Chem. Phys.
126
,
262
(
2011
).
65.
G.
Okuma
,
D.
Kadowaki
,
T.
Hondo
,
S.
Tanaka
, and
F.
Wakai
, “
Interface topology for distinguishing stages of sintering
,”
Sci. Rep.
7
,
11106
(
2017
).
66.
E. V.
Gomes
,
F. J. R.
Martinez
,
F. V.
Diez
,
M. J. M.
Leyva
, and
R. H.
Martin
, “
Description and experimental results of a semi-indirect ceramic evaporative cooler
,”
Intern. J. Refrigerat.
28
,
654
(
2005
).
67.
R. E.
Foster
and
E.
Dijkastra
, “Evaporative air-conditioning fundamentals: Environmental and economic benefits world wide,” International Conference of Applications for Natural Refrigerants’ Aarhus, Denmark, 96, September 3-6, IIF/IIR, 101 (1996).
68.
J. R.
Camargo
,
C. D.
Ebinuma
, and
J. L.
Silveira
, “
Experimental performance of a direct evaporative cooler operating during summer in a Brazilian city
,”
Intern. J. Refrigerat.
28
,
1124
(
2005
).
69.
D. N.
Cheban
, and
A. B.
Doroshenko
, “
Use of porous ceramics for evaporative and evaporative-vapour compression systems, problemele energeticii regionale
,”
Termoenerg.
2
,
57
(
2013
).
You do not currently have access to this content.