Four decades since the concept of polyamorphism was introduced by [L. S. Palatnik (1909–1994), Fiz. Nizk. Temp. 25, 400 (1909)], numerous investigations proved its presence in a broad variety of nonmagnetic short-range ordered materials, like structural, metallic, a-metallic, inorganic molecule, orientational, electron glasses, water, ice, carbons, and others. It was manifested by phase transitions between amorphous states as a function of the quench condition and under compression, mediated by long-wave fluctuations of an order parameter. There has been much recent discussion given to the phenomenon of polyamorphism where distinct, different states of amorphous liquids and solids are observed as a function of density. The outstanding contribution of the recently late [A. Sella, et al. (1956–2022), Nat. Mater. 21, 490 (2022)],2 in the field should be recognized here. Underlying this phenomenon is the possibility of a first-order liquid-liquid phase transition driven by the density and entropy differences between the two amorphous phases. Magnetic boost of multilayer graphene under pressure was also recently discovered. Their famous spin counterparts, such as spin liquid, spin ice, and spin glass have been less studied at this end despite numerous similarities, registered so far. Taking that in mind, for further polyamorphism platform development, we demonstrate the signatures of phase transition in spin glass, driven by a magnetic field, and eventually, a novel type of polyamorphism, the spin-glass one.

1.
L. S.
Palatnik
, (
1909–1994
): “
To his 90th birth anniversary
,”
Fiz. Nizk. Temp.
25
,
400
(
1909
) [
Low Temp. Phys.
25, 294 (1999)].
2.
A.
Sella
,
A.
Navrotsky
, and
P.
McMillan
(
1956–2022
),
Nat. Mater.
21
,
490
(
2022
).
3.
L. S.
Palatnik
,
A. A.
Nechitailo
, and
A. A.
Koz’ma
, “
Polyamorphism and substructure of short-range order in amorphous boron films
,”
Dokl. Acad. Nauk SSSR
36
,
1134
(
1981
);
cited from
L. S.
Palatnik
,
A. A.
Nechitajlo
, and
A. A.
Koz’ma
, Polyamorphism and substructure of short-range order in amorphous boron films, Dokl. Akad. Nauk SSSR (USSR); Journal Volume: 261:5: 1981. Web. Made available by U.S. Department of Energy Office of Scientific and Technical Information.
4.
P. F.
McMillan
and
M. C.
Wilding
,
Polyamorphism and Liquid–Liquid Phase Transitions, Encyclopedia of Glass Science, Technology, History, and CultureBook
, edited by,
P.
Richet
,
R.
Conradt
,
A.
Takada
, and
J.
Dyon
, First published: 01 February 2021.
5.
S. S.
Saxena
,
P.
Agarwal
,
K.
Ahilan
,
F. M.
Grosche
,
R. K.
Haselwimmer
,
M.J.
Steiner
,
E.
Pugh
,
I. R.
Walker
,
S. R.
Julian
,
P.
Monthoux
,
G. G.
Lonzarich
,
A.
Huxley
,
I. I.
Sheikin
,
D.
Braithwaite
, and
J.
Flouquet
, “
Superconductivity on the border of itinerant-electron ferromagnetism in UGe2
,”
Nature
406
,
6796
(
2000
).
6.
X.
Zhang
,
A. E.
Lita
,
H.
Liu
et al, “
Size-dependent nature of the magnetic-field driven superconductor-to-insulator quantum-phase transitions
,”
Commun. Phys.
4
,
100
(
2021
).
7.
C. R. S.
Haines
,
M. J.
Coak
,
A. R.
Wildes
,
G. I.
Lampronti
,
C.
Liu
,
P.
Nahai-Williamson
,
H.
Hamidov
,
D.
Daisenberger
, and
S. S.
Saxena
, “
Pressure-induced electronic and structural phase evolution in the van der Waals compound FePS3
,”
Phys. Rev. Lett.
121
,
266801
(
2018
).
8.
M. J.
Coak
,
D. M.
Jarvis
,
H.
Hamidov
,
A. R.
Wildes
,
J. A. M.
Paddison
,
C.
Liu
,
C. R. S.
Haines
,
N. T.
Dang
,
S. E.
Kichanov
,
B. N.
Savenko
,
S.
Lee
,
M.
Kratochvílová
,
S.
Klotz
,
T. C.
Hansen
,
D. P.
Kozlenko
,
J.
Park
, and
S. S.
Saxena
, “
Emergent magnetic phases in pressure-tuned van der Waals antiferromagnet FePS3
,”
Phys. Rev. X
11
,
011024
(
2021
).
9.
M.
Geers
,
D. M.
Jarvis
,
C.
Liu
,
S. S.
Saxena
,
J.
Pitcairn
,
E.
Myatt
,
S. A.
Hallweger
,
S. M.
Kronawitter
,
G.
Kieslich
,
S.
Ling
,
A. B.
Cairns
,
D.
Daisenberger
,
O.
Fabelo
,
L.
Cañadillas-Delgado
, and
M. J.
Cliffe
, “
High-pressure behavior of the magnetic van der Waals molecular framework Ni(NCS)2
,”
Phys. Rev. B
108
,
144439
(
2023
).
10.
M. J.
Coak
,
C. R. S.
Haines
,
C.
Liu
,
S. E.
Rowley
, and
G. G.
Lonzarich
, and
S. S.
Saxena
,
“Quantum critical phenomena in a compressible displacive ferroelectric
,”
Proc. Nat. Acad. Sci.
117
,
201922151
(
2020
).
11.
C.
Morice
,
P.
Chandra
,
S. E.
Rowley
, and
G.
Lonzarich
, and
S. S.
Saxena
, “
Hidden fluctuations close to a quantum bicritical point
,”
Phys. Rev. B
96
,
245104
(
2017
).
12.
C.
Enderlein
,
J. Ferreira
de Oliveira
,
D. A.
Tompsett
,
E.
Baggio Saitovitch
,
S. S.
Saxena
,
G. G.
Lonzarich
, and
S. E.
Rowley
, “
Superconductivity mediated by polar modes in ferroelectric metals
,”
Nat. Commun.
11
,
4852
(
2020
).
13.
S.
Lan
,
C.
Guo
,
W.
Zhou
et al, “
Engineering medium-range order and polyamorphism in nanostructured amorphous alloy
,”
Commun. Phys.
2
,
117
(
2019
).
14.
S.
Lan
,
Y.
Ren
,
X.
Wei
et al, “
Hidden amorphous phase and reentrant supercooled liquid in Pd-Ni-P metallic glasses
,”
Nat. Commun.
8
,
14679
(
2017
).
15.
H.
Harima
, “
Hidden-orders of uranium compounds
,”
Sci. Post Phys. Proc.
11
,
006
(
2023
).
16.
Y.
Yue
, “
‘Shadow’ glass transition in glass
,”
Nat. Sci. Rev.
8
, Issue
12
,
nwab160
(
2021
).
17.
Q.
Yang
,
S.
Peng
,
Z.
Wang
, and
H.
Yu
, “
Shadow glass transition as a thermodynamic signature of β relaxation in hyper-quenched metallic glasses
,”
Nat. Sci. Rev.
7
,
1896
(
2020
).
18.
W.
Wang
, and
P.
Luo
, “
The dynamic behavior hidden in the long time scale of metallic glasses and its effect on the properties
,”
Acta Metall. Sin.
54
,
1479
(
2018
).
19.
G.
Ferlat
,
A.
Seitsonen
,
M.
Lazzeri
et al, “
Hidden polymorphs drive vitrification in B2O3
,”
Nature Mater
11
,
925
(
2012
).
20.
P. F.
McMillan
,
M.
Wilson
,
M. C.
Wilding
et al, “
Polyamorphism and liquid–liquid phase transitions: Challenges for experiment and theory
,”
J. Phys.: Condens. Matter
19
,
415101
(
2007
).
21.
C. A.
Angell
, “
Landscapes with megabasins: Polyamorphism in liquids and biopolymers and the role of nucleation in folding and folding diseases
,”
Physica D
107
,
122
(
1997
).
22.
F.
Domagoj
and
W.
Mark
, “
Thermodynamic anomalies, polyamorphism and all that
,”
Phil. Trans. R. Soc. A
381
,
20220336
(
2023
).
23.
H.
Tanaka
, “
Liquid–liquid transition and polyamorphism
,”
J. Chem. Phys.
153
,
130901
(
2020
).
24.
P.
Poole
,
F.
Sciortino
,
U.
Essmann
, et al, “
Phase behaviour of metastable water
,”
Nature
360
,
324
(
1992
).
25.
O.
Mishima
, “
Polyamorphism in water
,”
Proc. Jpn. Acad. Ser. B
86
,
165
(
2010
).
26.
K.
Winkel
,
M. S.
Elsaesser
,
E.
Mayer
, and
T.
Loerting
, “
Water polyamorphism reversibility and (dis)continuity
,”
J. Chem. Phys.
128
,
044510
(
2008
).
27.
H.
Tanaka
, “
Bond orientational order in liquids: Towards a unified description of water-like anomalies, liquid-liquid transition, glass transition, and crystallization
,”
Eur. Phys. J. E
35
,
113
(
2012
).
28.
F.
Walton
,
J.
Bolling
,
A.
Farrell
et al, “
Polyamorphism mirrors polymorphism in the liquid–liquid transition of a molecular liquid
,”
J. Am. Chem. Soc.
142
,
7591
(
2020
).
29.
V. V.
Brazhkin
,
R. N.
Voloshin
,
S. V.
Popova
, and
A. G.
Umnov
, “
Nonmetal-metal transition in sulphur melt under high pressure
,”
Phys. Lett. A
154
,
413
(
1991
).
30.
S.
Aasland
and
P.
McMillan
, “
Density-driven liquid–liquid phase separation in the system AI2O3–Y2O3
,”
Nature
369
,
633
(
1994
).
31.
B.
Kalkan
,
S.
Sen
,
J.-Y.
Cho
,
Y.-C.
Joo
, and
S. M.
Clark
, “
Observation of polyamorphism in the phase change alloy Ge1Sb2Te4
,”
Appl. Phys. Lett.
101
,
151906
(
2012
).
32.
S. M.
Islam
,
L.
Peng
,
L.
Zeng
et al,
Multistates and polyamorphism in phase-change K2Sb8Se13
,”
J. Am. Chem. Soc.
140
,
9261
(
2018
).
33.
Y.
Chen
,
Z.
Lai
,
X.
Zhang
et al, “
Phase engineering of nanomaterials
,”
Nat. Rev. Chem.
4
,
243
(
2020
).
34.
E.
Principi
,
A.
Di Cicco
,
F.
Decremps
et al, “
Polyamorphic transition of germanium under pressure
,”
Phys. Rev. B
69
,
201201
(
2004
).
35.
O. I.
Barbakov
,
V. G.
Tissen
,
P. F.
McMillan
,
M.
Wilsen
,
A.
Sella
, and
M. V.
Nefedova
, “
Pressure-induced transformations and superconductivity of amorphous germanium
,”
Phys. Rev. B
82
,
020507(R)
(
2010
).
36.
T.
Fujita
,
Y.
Chen
,
Y.
Kono
et al, “
Pressure-induced reversal of peierls-like distortions elicits the polyamorphic transition in GeTe and GeSe
,”
Nat. Commun.
14
,
7851
(
2023
).
37.
D.
Daisenberger
,
M.
Wilson
,
P. F.
McMillan
et al, “
High-pressure x-ray scattering and computer simulation studies of density-induced polyamorphism in silicon
,”
Phys. Rev. B
75
,
224118
(
2007
).
38.
T.
Morishita
, “
High density amorphous form and polyamorphic transformations of silicon
,”
Phys. Rev. Lett.
93
,
055503
(
2004
).
39.
P.
McMillan
,
M.
Wilson
,
D.
Daisenberger
et al, “
A density-driven phase transition between semiconducting and metallic polyamorphs of silicon
,”
Nature Mater
4
,
680
(
2005
).
40.
S.
Deb
,
M.
Wilding
,
M.
Somayazulu
et al, “
Pressure-induced amorphization and an amorphous–amorphous transition in densified porous silicon
,”
Nature
414
,
528
(
2001
).
41.
Y.
Katayama
,
T.
Mizutani
,
W.
Utsumi
et al,
A first-order liquid–liquid phase transition in phosphorus
,”
Nature
403
,
170
(
2000
).
42.
O.
Mishima
, and
Y.
Suzuki
, “
Propagation of the polyamorphic transition of ice and the liquid–liquid critical point
,”
Nature
419
,
599
(
2002
).
43.
O.
Mishima
,
L. D.
Calvert
, and
E.
Whalley
, “
An apparently first-order transition between two amorphous phases of ice induced by pressure
,”
Nature
314
,
76
(
1985
).
44.
S.
Klotz
T.
Strässle
,
R. J.
Nelmes
et al, “
Nature of the polyamorphic transition in ice under pressure
,”
Phys. Rev. Lett.
94
,
025506
(
2005
).
45.
M.
Smoluchowski
, “
Molekular-kinetische theorie der opaleszenz von gasen im kritischen zustande, sowie einiger verwandter erscheinungen
,”
Ann. Phys.
330
,
205
(
1908
);
46.
L. S.
Ornstein
, and
F.
Zernike
, “
Accidental deviations of density and opalescence at the Z critical point of a single substance
,”
Proc. Acad. Sci. (Amsterdam)
17
,
793
(
1914
).
47.
A. Z.
Patashinskii
and
V. L.
Pokrovskii
,
Fluctuation Theory of Phase Transitions
(
Nauka
,
Moscow
,
1982
).
48.
A. S.
Bakai
, and
E. W.
Fischer
, “
Nature of long-range correlations of density fluctuations in glass-forming liquids
,”
J. Chem. Phys.
15
,
5235
(
2004
).
49.
V. A.
Sirenko
, “
Critical phenomena in superconductors and uniaxial antiferromagnets
,”
Fiz. Nizk. Temp.
38
,
1007
(
2012
) [
Low Temp. Phys.
38, 799 (2012)].
50.
A. A.
Lebedev
, “
The polymorphism and annealing in glass, transactions Opt. inst. petrograd.
,” No. 2, 1 (1921); Abstract published, in:
J. Soc. Glass Technol.
, No.
6
,
110
(
1922
);
English transl. published in:
A. C.
Wright
, The Constitution of Glass Sheffield: Soc. Glass Technol. (
2012
), p. 295.
51.
P. H.
Poole
,
T.
Grande
,
F.
Sciortinod
,
H. E.
Stanley
, and
C. Austen
Angel1
, “
Amorphous polymorphism, computational materials
,”
Science
4
,
373
(
1995
).
52.
P. F.
McMillan
, “
Polyamorphic transformations in liquids and glasses
,”
J. Mater. Chem.
14
,
1506
(
2004
).
53.
P. H.
Poole
,
T.
Grande
,
C. A.
Angell
, and
P. F.
McMillan
, “
Polymorphic phase transitions in liquids and glasses
,”
Science
275
,
322
(
1997
).
54.
D.
Machon
,
F.
Meersman
,
M. C.
Wilding
,
M.
Wilson
, and
P. F.
McMillan
, “
Pressure-induced amorphization and polyamorphism: Inorganic and biochemical systems
,”
Progr. Mater. Sci.
61
,
216
(
2014
).
55.
E. W.
Fischer
, “
Light scattering and dielectric studies on glass-forming liquids
,”
Physica A
201
,
183
(
1993
).
56.
O. S.
Bakai
, “
On polyamorphism in heterophase matter
,”
Fiz. Nyzk. Temp.
49
,
658
(
2023
) [
Low Temp. Phys.
49, 601 (2023)].
57.
A. K.
Varshneya
and
J. C.
Mauro
, Glass transition range behavior in Fundamentals of Inorganic Glasses, Third Edition (Elsevier,
2019
), Ch. 13.
58.
A.
Zhang
,
Y.
Jin
,
T.
Liu
,
R. B.
Stephens
, and
Z.
Fakhraai
, “
Polyamorphism of vapor-deposited amorphous selenium in response to light
,”
Proceedings of the National Academy of Sciences
117
,
24076
(
2020
).
59.
I.
Garbayo
,
M.
Struzik
,
W. J.
Bowman
,
R.
Pfenninger
,
E.
Stilp
, and
J. L. M.
Rupp
, “
Glass-type polyamorphism in Li-garnet thin film solid state battery conductors
,”
Adv. Energy Mater.
8
,
1702265
(
2018
).
60.
M. C.
Wilding
and
P. F.
McMillan
, “
Polyamorphic transitions in yttria–alumina liquids
,”
J. Non-Crystalline Solids
293–295
,
357
(
2001
).
61.
I.
Saika-Voivod
,
P. H.
Poole
, and
F.
Sciortino
, “
Fragile-to-strong transition and polyamorphism in the energy landscape of liquid silica
,”
Nature
412
,
514
(
2001
).
62.
C. Sonneville Christine
Martinet
,
T.
Deschamps
, and
D.
De Ligny
, “
polyamorphic transitions in silica glass
,”
J. Non-Cryst. Solids
382
,
133
(
2013
).
63.
R.
Hemley
,
A.
Jephcoat
,
H.
Mao
et al, “
Pressure-induced amorphization of crystalline silica
,”
Nature
334
,
52
(
1988
).
64.
C.
Meade
,
R. J.
Hemley
, and
H. K.
Mao
, “
High-pressure x-ray-diffraction of SiO2 glass
,”
Phys. Rev. Lett.
69
,
1387
(
1992
).
65.
S.
Sen
,
S.
Gaudio
,
B. G.
Aitken
, and
C. E. A.
Lesher
, “
Pressure-induced first-order polyamorphic transition in a chalcogenide glass at ambient temperature
,”
Phys. Rev. Lett.
97
,
025504
(
2006
).
66.
B.
Kalkan
,
G.
Okay
,
B.G.
Aitken
et al, “
Unravelling the mechanism of pressure-induced polyamorphic transition in an inorganic molecular glass
,”
Sci. Rep.
10
,
5208
(
2020
).
67.
S.
Fuhrmann
,
T.
Deschamps
,
B.
Champagnon
, and
L.
Wondraczek
, “
A reconstructive polyamorphous transition in borosilicate glass induced by irreversible compaction
,”
J. Chem. Phys.
140
,
054501
(
2014
).
68.
S. A.
Khan
,
X.-D.
Wang
,
A. S.
Ahmad
,
Q.-P.
Cao
,
D.-X.
Zhang
,
Y.-Z.
Fang
,
H.
Wang
, and
J.-Z.
Jiang
, “
Temperature- and pressure-induced polyamorphic transitions in AuCuSi alloy
,”
J. Phys. Chem. C
123
,
20342
(
2019
).
69.
H. W.
Sheng
,
H. Z.
Liu
,
Y. Q.
Cheng
et al, “
Polyamorphism in a metallic glass
,”
Nat. Mater.
6
,
192
(
2007
).
70.
W.
Klement
,
R. H.
Willens
, and
P. O. L.
Duwez
, “
Non-crystalline structure in solidified gold-silicon alloys
,”
Nature
187
,
869
(
1960
);
A. L.
Greer
, “
Metallic glasses
,”
Science
.
267
,
1947
(
1995
).
[PubMed]
71.
A. S.
Bakai
, “
On low-temperature polyamorphous transformations
,”
Fiz. Nizk. Temp.
32
,
1143
(
2006
) [
Low Temp. Phys.
32, 868 (2006).
72.
A. S.
Bakai
,
Polycluster Amorphous Solids
(
Syntex, Kharkov
,
2013
).
73.
Q.
Luo
,
W.
Cui
,
H.
Zhang
et al, “
Polyamorphism mediated by nanoscale incipient concentration wave uncovering hidden amorphous intermediate state with ultrahigh modulus in nanostructured metallic glass
,”
Mater. Futures
2
,
025001
(
2023
).
74.
Z.
Qiaoshi
,
Y.
Ziliang
, and
L.
Hongbo
, “
Polyamorphic transitions in metallic glasses
,”
Acta Metall. Sin.
57
,
491
(
2021
).
75.
Q.-s.
Zeng
,
Y.
Ding
,
W. L.
Mao
,
S.
Wenge Yang
,
V.
Sinogeikin
,
J.
Shu
,
H.-k.
Mao
, and
J. Z.
Jiang
, “
Origin of pressure-induced polyamorphism in metallic glass
,”
Phys. Rev. Lett.
104
,
105702
(
2010
).
76.
Q.
Luo
,
G.
Garbarino
,
B.
Sun
et al, “
Hierarchical densification and negative thermal expansion in Ce-based metallic glass under high pressure
,”
Nat. Commun.
6
,
5703
(
2015
).
77.
F.
Decremps
,
G.
Morard
,
G.
Garbarino
, and
M.
Casula
, “
Polyamorphism of a Ce-based bulk metallic glass by high-pressure and high-temperature density measurements
,”
Phys. Rev. B
93
,
054209
(
2016
).
78.
Q. S.
Zeng
,
V. V.
Struzhkin
,
Y. Z.
Fang
,
C. X.
Gao
,
H. B.
Lou
,
X. D.
Wang
,
C.
Lathe
,
F. M.
Mao
,
W. L.
Wu
,
H.-K.
Mao
et al, “
Properties of polyamorphous Ce75Al25 metallic glasses
.”
Phys. Rev. B
82
,
054111
(
2010
).
79.
V. V.
Brazhkin
,
E.
Bychkov
, and
O. B.
Tsiok
, “
As2te3 glass under high hydrostatic pressure: Polyamorphism, relaxation, and metallization
,”
Phys. Rev. B
95
,
054205
(
2017
).
80.
G.
Li
,
Y. Y.
Wang
,
P. K.
Liaw
,
Y. C.
Li
, and
R. P.
Liu
, “
Electronic structure inheritance and pressure-induced polyamorphism in lanthanide-based metallic glasses
,”
Phys. Rev. Lett.
109
,
125501
(
2012
).
81.
L.
Li
,
L.
Wang
,
R.
Li
,
D.
Qu
,
H.
Zhao
,
K. W.
Chapman
,
P. J.
Chupas
, and
H.
Liu
, “
Pressure-induced polyamorphism in lanthanide-solute metallic glasses
,”
Phys. Status Solidi RRL
11
,
1700078
(
2017
).
82.
L.
Li
,
Q.
Luo
,
R.
Li
,
H.
Zhao
,
K. W.
Chapman
,
P. J.
Hupas
,
L.
Wang
, and
H.
Liu
, “
Polyamorphism in Yb-based metallic glass induced by pressure
,”
Sci. Rep.
7
,
46762
(
2017
).
83.
M.
Wu
,
H. B.
Lou
,
J. S.
Tse
,
H.
Liu
,
Y.
Pan
,
K.
Takahama
,
T.
Matsuoka
,
K.
Shimizu
, and
J. Z.
Jiang
, “
Pressure-induced polyamorphism in a main-group metallic glass
,”
Phys. Rev. B
94
,
054201
(
2016
).
84.
Q.
Yang
,
X.-M.
Yang
,
T.
Zhang
,
X.-W.
Liu
, and
H.-B.
Yu
, “
Structure and entropy control of polyamorphous transition in high-entropy metallic glasses
,”
Acta Mater.
266
,
119701
(
2024
).
85.
Q.
Du
,
X.
Liu
,
H.
Fan
,
Q.
Zeng
,
Y.
Wu
,
H.
Wang
,
D.
Chatterjee
,
Y.
Ren
,
Y.
Ke
,
P. M.
Voyles
,
Z.
Lu
, and
E.
Ma
, “
Reentrant glass transition leading to ultrastable metallic glass
,”
Mater. Today
34
,
66
(
2020
).
86.
(a)
V. G.
Manzhelii
,
A. V.
Dolbin
,
V. B.
Eselson
,
V. G.
Gavrilko
,
G. E.
Gadd
,
S.
Moricca
,
D.
Cassidy
, and
B.
Sundqvist
,
Fiz. Nizk. Temp.
32
,
913
(
2006
) [
Low Temp. Phys.
32, 695 (2006)];
(b)
A. V.
Dolbin
,
V. B.
Esel’son
,
V. G.
Gavrilko
,
V. G.
Manzhelii
,
N. A.
Vinnikov
, and
S. N.
Popov
,
Pisma ZhETF
93
,
638
(
2011
) [
JETP Lett.
93, 577 (2011)];
(c)
A. V.
Dolbin
,
V. B.
Esel’son
,
V. G.
Gavrilko
,
V. G.
Manzhelii
,
N. A.
Vinnikov
,
S. N.
Popov
, and
B.
Sundqvist
,
Fiz. Nizk. Temp.
34
,
860
(
2008
) [
Low Temp. Phys.
34, 678 (2008)];
(d)
A. V.
Dolbin
,
V. B.
Esel’son
,
V. G.
Gavrilko
,
V. G.
Manzhelii
,
N. A.
Vinnikov
,
S. N.
Popov
,
N. I.
Danilenko
, and
B.
Sundqvist
,
Fiz. Nizk. Temp.
35
,
613
(
2009
) [
Low Temp. Phys.
35, 484 (2009)],
(e)
M. A.
Strzhemechny
and
A. V.
Dolbin
, “
Novel carbon materials: New tunneling systems
,”
Fiz. Nizk. Temp.
39
,
531
(
2013
) [
Low Temp. Phys.
39, 409 (2013)];
(f)
A. V.
Dolbin
,
V. B.
Esel’son
,
V. G.
Gavrilko
,
V. G.
Manzhelii
,
N. A.
Vinnikov
,
G. E.
Gadd
,
S.
Moricca
,
D.
Cassidy
, and
B.
Sundqvist
,
Fiz. Nizk. Temp.
33
,
1401
(
2007
) [
Low Temp. Phys.
33, 1068 (2007)];
(g)
A. V.
Dolbin
,
V. B.
Esel’son
,
V. G.
Gavrilko
,
V. G.
Manzhelii
,
N. A.
Vinnikov
,
G. E.
Gadd
,
S.
Moricca
,
D.
Cassidy
, and
B.
Sundqvist
,
Fiz. Nizk. Temp.
34
,
592
(
2008
) [
Low Temp. Phys.
34, 470 (2008)].
87.
A. N.
Aleksandrovskii
,
A. S.
Bakai
,
D.
Cassidy
,
A. V.
Dolbin
,
V. B.
Eselson
,
G. E.
Gadd
,
V. G.
Gavrilko
,
V. G.
Manzhelii
,
S.
Moricca
, and
B.
Sandqvist
,
Fiz. Nizk. Temp.
31
,
565
(
2005
) [
Low Temp. Phys.
31, 429 (2005)].
88.
Y.
Shang
,
M.
Yao
,
Z.
Liu
et al, “
Enhancement of short/medium-range order and thermal conductivity in ultrahard sp3 amorphous carbon by C70 precursor
,”
Nat. Commun.
14
,
7860
(
2023
).
89.
J.
Narayan
,
A.
Bhaumik
, and
R.
Sachan
, “
High temperature superconductivity in distinct phases of amorphous B-doped Q-carbon
,”
J. Appl. Phys.
123
,
135304
(
2018
).
90.
H.
Shinohara
, “
Endohedral metallofullerenes
,”
Rep. Prog. Phys.
63
,
843
(
2000
).
91.
(a)
H.
Tanaka
,
J.
Russo
,
M.
Leocmach
, and
T.
Kawasaki
, “
Spontaneous Bond Orientational Ordering in Liquids: An Intimate Link between Glass Transition and Crystallization, 4th International Symposium on Slow Dynamics in Complex Systems
:
Keep Going Tohoku, Sendai, Japan
(
2013
)”
AIP Conf. Proc.
1518
, 143 (2013);
(b)
H.
Tanaka
, “
Bond orientational order in liquids: Towards a unified description of water-like anomalies, liquid-liquid transition, glass transition, and crystallization
,”
Eur. Phys. J. E
35
,
113
(
2012
).
92.
P. W.
Anderson
, “
Resonating valence bonds: A new kind of insulator?
,”
Mater. Res. Bull.
8
,
153
(
1973
).
93.
L.
Savary
and
L.
Balents
, “
Quantum spin liquids: A review
,”
Rep. Prog. Phys.
80
,
016502
(
2017
).
94.
M. A.
de Vries
,
J. R.
Stewart
,
P. P.
Deen
,
J. O.
Piatek
,
G. J.
Nilsen
,
H. M.
Ronnow
, and
A.
Harrison
, “
Scale-free antiferromagnetic fluctuations in the S = 1/2 kagome antiferromagnet herbertsmithite
,”
Phys. Rev. Lett.
103
,
237201
(
2009
).
95.
A.
Banerjee
,
C. A.
Bridges
,
J.-Q.
Yan
,
A. A.
Aczel
,
L.
Li
,
M. B.
Stone
,
G. E.
Granroth
,
M. D.
Lumsden
,
Y.
Yiu
,
J.
Knolle
,
S.
Bhattacharjee
,
D. L.
Kovrizhin
,
R.
Moessner
,
D. A.
Tennant
,
D. G.
Mandrus
, and
S. E.
Nagler
, “
Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet
,”
Nat. Mater.
15
,
733
(
2016
).
96.
H.-J.
Kim
,
C.
Haines
,
C.
Liu
,
S. H.
Chun
,
K. H.
Kim
,
H.
Yi
,
S.-W.
Cheong
, and
S. S.
Saxena
, “
Observation of new magnetic ground state in frustrated quantum antiferromagnet spin-liquid system Cs2CuCl4
,”
Fiz. Nizk. Temp.
43
,
1126
(
2017
) [
Low Temp. Phys.
43, 901 (2017)].
97.
I.
Zaliznyak
,
A. T.
Savici
,
M.
Lumsden
,
A.
Tsvelik
,
R.
Hua
, and
C.
Petrovic
, “
Spin-liquid polymorphism in a correlated electron system on the threshold of superconductivity
,”
Proc. Natl. Acad. Sci. USA
112
,
10316
(
2015
).
98.
A.
Zvyagin
, “
New physics in frustrated magnets: Spin ices, monopoles
,”
Fiz. Nizk. Temp.
39
,
1159
(
2013
) [
Low Temp. Phys.
39, 901 (2013)].
99.
S. H.
Skjærvø
,
C. H.
Marrows
,
R. L.
Stamps
et al, “
Advances in artificial spin ice
,”
Nat. Rev. Phys.
2
,
13
(
2020
).
100.
V.
Cannella
, and
J. A.
Mydosh
, “
Magnetic ordering in gold-iron alloys
,”
Phys. Rev. B
6
,
4220
(
1972
).
101.
D.
Sherrington
,
Spin Glasses: A Perspective, in: Spin Glasses. Lecture Notes in Mathematics
, edited by,
E.
Bolthausen
and
A.
Bovier
, (
Springer
,
Berlin, Heidelberg
,
2007
), vol.
1900
.
102.
E.
Vincent
,
Spin Glass Experiments, 2nd Edition of the Elsevier Encyclopedia of Condensed Matter Physics
(Various Authors Spin Glass Theory and Far Beyond Replica Symmetry Breaking after 40 Years) edited by,
P.
Charbonneau
,
M.
Mezard
,
E.
Marinari
,
F.
Ricci-Tersenghi
,
G.
Sicuro
, and
F.
Zamponi
, (
World Scientific
,
2023
) arXiv:2208.00981.
103.
G.
Parisi
,
Nobel Lecture: Multiple Equilibria
(
2023
).
104.
H.
Kawamura
and
T.
Taniguchi
,
Spin glasses
, edited by,
K. H. J.
Buschow
,
Handbook of Magnetic Materials
, (
Elsevier
,
2015
), Vol. 24, Ch. 1, p. 1.
105.
M.
Mézard
, “
Spin glass theory and its new challenge: Structured disorder
,”
Indian J. Phys.
(published online) (
2023
).
106.
(a)
K. S.
Fischer
and
J. A.
Hertz
,
Spin Glasses
, (
Cambridge University Press
,
London
,
1991
);
(b)
D. L.
Stein
and
C. M.
Newman
,
Spin Glasses and Complexity
, (
Princeton University Press
,
2012
).
107.
J. A.
Mydosh
, “
Spin glasses: Redux: An updated experimental/materials survey
,”
Rep. Prog. Phys.
78
,
4220
(
2015
).
108.
P. G.
LaBarre
,
D.
Phelan
,
Y.
Xin
,
F.
Ye
,
T.
Besara
,
T.
Siegrist
,
S. V.
Syzranov
,
S.
Rosenkranz
, and
A. P.
Ramirez
, “
Fluctuation-induced interactions and the spin-glass transition in Fe2TiO5
,”
Phys. Rev. B
103
,
L220404
(
2021
).
109.
T. M.
Pekarek
,
J. H.
Blackburn
,
I.
Miotkowski
, and
A. K.
Ramdas
, “
Exploring the critical behavior of the anomalous spin–glass transition in Ga1−xMnxS
,”
AIP Advances
14
,
025035
(
2024
).
110.
V. S.
Dotsenko
, “
Critical phenomena, and quenched disorder
,”
Phys.-Usp.
38
,
457
(
1995
) [Usp. Fiz. Nauk 165, 481 (1995)].
111.
V. S.
Dotsenko
,
M. V.
Feigel’man
, and
L. B.
Ioffe
,
Spin Glasses and Related Problems
(
CRC Press
,
1990
).
112.
D.
Åberg
,
P.
Erhart
,
J.
Crowhurst
,
J. M.
Zaug
,
A. F.
Goncharov
, and
B.
Sadigh
, “
Pressure-induced phase transition in the electronic structure of palladium nitride
,”
Phys. Rev. B
82
,
104116
(
2010
).
113.
V.
Sirenko
, and
V.
Eremenko
, “
The universality of the magnetization irreversibility line of metglasses and superconductors
,”
Fiz. Nizk. Temp.
40
,
1099
(
2014
) [
Low Temp. Phys.
40, 859 (2014)].
114.
S.
Sugiura
,
T.
Isono
,
T.
Terashima
et al, “
Fulde–Ferrell–Larkin–Ovchinnikov and vortex phases in a layered organic superconductor
,”
Quant. Mater.
4
,
7
(
2019
).
115.
G.
Blatter
,
M. V.
Feigel’man
,
V. B.
Geshkenbein
,
A. I.
Larkin
, and
V. M.
Vinokur
, “
Vortices in high-temperature superconductors
,”
Rev. Mod. Phys.
66
,
1125
(
1994
).
116.
T.
Nattermann
, and
S.
Scheidl
, “
Vortex-glass phases in type-II superconductors
,”
Adv. Phys.
49
,
607
(
2000
).
117.
S. S.
Banerjee
,
A. K.
Grover
,
M. J.
Higgins
,
G. I.
Menon
,
P. K.
Mishra
,
D.
Pal
,
S.
Ramakrishnan
,
T. V.
Chandrasekhar Rao
,
G.
Ravikumar
,
V. C.
Sahni
,
S.
Sarkar
, and
C. V.
Tomy
, “
Disordered type-II superconductors: A universal phase diagram for low-Tc systems
,”
Physica C
355
,
39
(
2001
).
118.
J. H. E.
Cartwright
,
A. G.
Checa
,
J. D.
Gale
,
D.
Gebauer
, and
C. I.
Sainz-Diaz
, “
Calcium carbonate polyamorphism and its role in biomineralization: How many amorphous calcium carbonates are there?
Angew Chem. Int. Ed. Engl.
51
,
11960
(
2012
).
119.
I. C. B.
Martins
, and
A. S.
Larsen
,
A.
Madsen
,
O. A.
Frederiksen
,
A.
Correia
,
K. M..
Jensen
,
H. S.
Jeppesen
, and
T.
Rades
, “
Unveiling polyamorphism and polyamorphic interconversions in pharmaceuticals: The peculiar case of hydrochlorothiazide
,”
Chem. Sci.
14
,
11447
(
2023
).
120.
D.
Zhang
,
B.
Gao
,
S.
Xu
,
C.
Niu
, and
Q.
Xu
, “
Room-temperature macroscopic ferromagnetism in multilayered graphene oxide
,”
Adv. Phys. Res.
3
,
2300092
(
2024
).
121.
A. A.
Zvyagin
,
Quantum Theory of One-Dimensional Spin Systems
,
(
Cambridge Scientific Publishers
,
Cambridge
,
2010
).
122.
S.
Sachdev
, “
Quantum magnetism and criticality
,”
Nature Phys.
4
,
173
(
2008
).
123.
S.
Franz
,
Glassy disordered systems: Dynamical evolution
, edited by,
J.
Françoise
,
G. L.
Naber
, and
T. S.
Tsun
,
Encyclopedia of Mathematical Physics
, (
Academic Press
,
2006
), pp.
553
560
.
124.
D.
Bitko
,
S. N.
Coppersmith
,
R. L.
Leheny
,
N.
Menon
,
S. R.
Nagel
, and
T. F.
Rosenbaum
, “
Evidence for glass and spin-glass phase transitions from the dynamic susceptibility
,”
J. Res. Natl. Inst. Stand. Technol.
102
,
207
(
1997
).
125.
L. A.
Pastur
, and
A. L.
Figotin
, “
An exactly solvable spin glass model
,”
Fiz. Nizk. Temp.
3
,
778
(
1977
) [Low Temp. Phys. 3, 378 (1977)].
126.
J. R. L.
de Almeida
, and
D. J.
Thouless
, “
Stability of the sherrington-kirkpatrick solution of a spin glass model,
J, Phys. A
11
,
983
(
1978
).
127.
M.
Gabay
, and
G.
Toulouse
, “
Coexistence of spin-glass and ferromagnetic orderings
,”
Phys. Rev. Lett.
47
,
201
(
1981
).
128.
G.
Kotliar
, and
H.
Sompolinsky
, “
Phase transition in a Dzyaloshinsky–Moriya spin-glass
,”
Phys. Rev. Lett.
53
,
1751
(
1984
).
129.
H.
Kawamura
, “
Two models of spin glasses — Ising versus Heisenberg
,”
J. Phys.: Conf. Ser.
233
,
012012
(
2010
).
130.
M.
Ohzeki
,
H.
Nishimori
, and
A. N.
Berker
, “
Multicritical points for spin-glass models on hierarchical lattices
,”
Phys. Rev. E
77
,
061116
(
2008
).
131.
G. F.
Rodriguez
,
G. G.
Kenning
, and
R.
Orbach
, “
Effect of the thermal quench on aging in spin glasses
,”
Phys. Rev. B
88
,
054302
(
2013
).
132.
P. C.
Hohenberg
and
B. I.
Halperin
, “
Theory of dynamic critical phenomena
,”
Rev. Mod. Phys.
94
,
262
(
1977
).
133.
K.
Gunnarson
,
P.
Svedlindh
,
P.
Nordblad
,
L.
Lundgren
,
H.
Aruga
, and
A.
Ito
, “
Dynamics of an Ising spin-glass in the vicinity of the spin-glass temperature
,”
Phys. Rev. Lett.
61
,
754
(
1988
).
134.
D.
Petit
,
L.
Fruchter
, and
I. A.
Campbell
, “
Ordering in heisenberg spin glasses
,”
Phys. Rev. Lett.
88
,
207206
(
2002
).
135.
A. F.
da Silva
,
A. S.
Martins
, and
M. F.
de Campos
, “
Spin glass transition in AuFe, CuMn, AuMn, AgMn and AuCr systems
,”
J. Magn. Magn. Mater.
479
,
222
(
2019
).
136.
Comment on “
Spin–glass transition of the three-dimensional Heisenberg spin glass
”,
I. A.
Campbell
and
H.
Kawamura
,
Phys. Rev. Lett.
99
,
019701
(
2007
).
137.
I.
Campos
,
M.
Cotallo-Aban
,
V.
Martin-Mayor
,
S.
Perez-Gaviro
, and
A.
Tarancon
, “
Spin–glass transition of the three-dimensional Heisenberg spin glass
,”
Phys. Rev. Lett.
97
,
217204
(
2006
).
138.
E.
Bartolomé
,
A.
Arauzo
,
J.
Luzón
,
J.
Bartolomé
, and
F.
Bartolomé
, “
Magnetic relaxation of lanthanide-based molecular magnets
,”
Handbook of Magnetic Materials
26
,
1
(
2017
).
139.
F.
Luis
,
J.
Campo
,
J.
Gómez
,
G. J.
McIntyre
,
J.
Luzón
, and
D.
Ruiz-Molina
, “
Long-range ferromagnetism of Mn12 acetate single-molecule magnets under a transverse magnetic field
,”
Phys. Rev. Lett.
95
,
227202
(
2005
).
140.
V.
Sirenko
,
F.
Bartolome
, and
J.
Bartolome
,
Fiz. Nyzk. Temp.
50
,
477
(
2024
) [
Low Temp. Phys.
50(
6
),
431
(
2024
)].
141.
M.
Mézard
, “
First steps in glass theory, more is different: A short account of the analogy between fragile glasses and the mean-field discontinuous spin glasses: “… there are still fascinating questions of principle about glasses and other amorphous phases
” (
2000
).
142.
P. W.
Anderson
, “
More is different: Broken symmetry and the nature of the hierarchical structure of science
,”
Science
177
,
393
(
1972
).
143.
K. G.
Wilson and
,
M. E.
Fisher
, “
Critical exponents in 3.99 dimensions
,”
Phys. Rev. Lett.
28
,
240
(
1972
).
144.
M.
Mézard
, and
G.
Parisi
, “
Statistical physics of structural glasses
,”
J. Phys.: Condens. Matter
12
,
6655
(
2000
).
145.
V. A.
Sirenko
, and
V. V.
Eremenko
, “
Irreversibility and anisotropy of the low-temperature magnetization in manganites. spin-glass polyamorphism
,”
Fiz. Nyzk. Temp.
40
,
230
(
2014
) [
Low Temp. Phys.
40, 179 (2014)];
V. V.
Eremenko
,
V. A.
Sirenko
et al,
J. Phys. Condens. Matter
30
,
205801
(
2018
).
[PubMed]
146.
J. B.
Goodenough
, “
Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO3
,”
Phys. Rev.
100
,
564
(
1955
).
147.
H.
Kazuma
et al, “
Two-dimensional planar ferromagnetic coupling in LaMnO3
,”
J. Phys. Soc. Jpn.
65
,
3736
(
1996
).
148.
C.
Ritter
,
M. R.
Ibarra
,
J. M.
De Teresa
,
P. A.
Algarabel
,
C.
Marquina
,
J.
Blasco
,
J.
García
,
S.
Oseroff
, and
S-W.
Cheong
, “
Influence of oxygen content on the structural, magnetotransport, and magnetic properties of LaMnO3+δ
,”
Phys. Rev. B
56
,
8902
(
1997
).
149.
R.
Laiho
,
K. G.
Lisunov
,
E.
Lähderanta
,
P. A.
Petrenko
,
J.
Salminen
,
V. N.
Stamov
,
Yu. P.
Stepanov
, and
V. S.
Zakhvalinskii
, “
Low-field magnetic properties of LaMnO3+δ with 0.065 ≤ δ ≤ 0.154
,”
J. Phys. Chem. Solids
64
,
2313
(
2003
).
150.
J.
Töpfer
and
J. B.
Goodenough
, “
Lamno3+δ revisited
,”
J. Solid State Chem.
130
,
117
(
1997
).
151.
M. S.
Kim
,
J. G.
Park
,
K. H.
Kim
,
T. W.
Noh
, and
H. C.
Ri
, “
Evidence of spin frustration in LaMnO3+δ with δ = 0.0 and 0.025
,”
J. Korean Phys. Soc.
37
,
561
(
2000
).
152.
D.
Neagu
,
G.
Tsekouras
,
D. N.
Miller
,
H.
Ménard
, and
J. T.
Irvine
, “
In situ growth of nanoparticles through control of non-stoichiometry
,”
Nat. Chem.
5
,
916
(
2013
).
153.
S.
Das
,
P.
Roychoudhury
,
S.
De
,
A.
Roy
,
S.
Chatterjee
, and
K.
De
, “
Magnetic and electrical transport of the cation-deficient LaMnO3: Common origin for both Sr-doping and self-doping effects
,”
Physica B
544
,
17
(
2018
).
154.
S.
Sardar
,
M.
Vagadia
,
T. M.
Tank
,
J.
Sahoo
, and
D. S.
Rana
, “
Exploring anisotropic phases and spin transport in perovskite heterostructures: Insights into 3d/5d interfaces for antiferromagnetic spintronics
,”
J. Appl. Phys.
135
,
080701
(
2024
).
155.
K. L.
Livesey
,
S.
Ruta
,
N. R.
Anderson
et al, “
Beyond the blocking model to fit nanoparticle ZFC/FC magnetization curves
,”
Sci. Rep.
8
,
11166
(
2018
).
156.
F.
Rivadulla
,
M.
López-Quintela
, and
J.
Rivas
, “
Origin of the glassy magnetic behavior of the phase segregated state of the perovskites
,”
Phys. Rev. Lett.
93
,
167206
(
2004
).
157.
V. A.
Desnenko
,
V. A.
Sirenko
,
I. O.
Troyanchuk
,
A. V.
Fedorchenko
, and
A. V.
Yeremenko
, “
Low-temperature relaxation of magnetization in manganite Pr0.4Bi0.3Ca0.3MnO3
,”
Fiz. Nizk. Temp.
44
,
1227
(
2018
) [
Low Temp. Phys.
44, 962 (2018)].
158.
V.
Sirenko
, and
V.
Eremenko
, “
Universality of the magnetization irreversibility line of systems with competing interactions (manganites, cobaltites, ferrites)
,”
Fiz. Nizk. Temp.
40
,
671
(
2014
) [
Low Temp. Phys.
40, 521 (2014)].
159.
H.
Nishimori
, “
Internal energy, specific heat and correlation function of the bond-random ising model
,”
Prog. Theor. Phys.
66
,
1169
(
1981
).
You do not currently have access to this content.