The mechanical properties of the half-Heusler alloy C2CaNa using density functional theory approach as installed in Quantum Espresso software was examined. We observed that C2CaNa will be easily compressed due to the small value of its bulk modulus. The values of the lattice constant a0, elastic constants (C11, C12, C14), Young’s modulus E, Piosson’s ratio ν, Shear modulus G, Zener anitropy A, pressure derivative B′, and band-gap Eg were obtained. Also the Voigt approximation, Reuss approximation and the Voigt–Reuss–Hill average of the approximation were gotten. Calculated values of G/B ratio is 0.581; this shows that C2CaNa has low resistance opposed to shear deformation. The B/G ratio evaluated for C2CaNa is 1.72. This implies that C2CaNa is “brittle” in nature at ambient condition. Our calculated elastic constants (C11, C12, and C44) for C2CaNa satisfied the following mechanical stability conditions for cubic structure: C11C12 > 0, C44 > 0, and C11 + 2C12 > 0. The value of C12 is an indication that C2CaNa is mechanically stable. This examination gives important experiences into the primary dependability and mechanical way of behavior of this material, this will empower advance material plan and application.

1.
M. S.
Dresselhaus
,
G.
Chen
,
M. Y.
Tang
,
R.
Yang
,
H.
Lee
,
D.
Wang
, and
Z.
Ren
, “
New directions for low-dimensional thermoelectric materials
,”
Adv. Mater.
19
,
1043
(
2007
).
2.
G. A.
Slack
,
New Materials and Performance Limits for Thermoelectric Cooling, CRC Handbook of Thermoelectrics
(
CRC Press
,
1995
), p. 407.
3.
T.
Graf
,
C.
Felser
, and
S. S.
Parkin
, “
Simple rules for the understanding of heusler compounds
,”
Progr. Solid State Chem.
39
,
1
(
2011
).
4.
V. V.
Eremenko
,
V. A.
Sirenko
,
I. A.
Gospodarev
,
E. S.
Syrkin
,
S. S.
Saxena
,
A.
Feher
,
S. B.
Feodosyev
,
I. S.
Bondar
, and
K. A.
Minakova
, “
Effect of step-edge on spectral properties and planar stability of metallic bigraphene
,”
Fiz. Nizk. Temp.
42
,
134
(
2016
) [
Low Temp. Phys.
42, 99 (2016)].
5.
I. A.
Gospodarev
,
V. I.
Grishaev
,
E. V.
Manzhelii
,
K. A.
Minakova
,
E. S.
Syrkin
, and
S. B.
Feodosyev
, “
Phonon heat capacity of graphene nanofilms and nanotubes
,”
Fiz. Nizk. Temp.
43
,
322
(
2017
) [
Low Temp. Phys.
43, 264 (2017)].
6.
V. V.
Eremenko
,
V. A.
Sirenko
,
I. A.
Gospodarev
,
E. S.
Syrkin
,
S. B.
Feodosyev
,
I. S.
Bondar
,
A.
Feher
, and
K. A.
Minakova
, “
Electron and phonon states localized near boundary of graphene
,”
Fiz. Nizk. Temp.
43
,
1657
(
2017
) [
Low Temp. Phys.
43, 1323 (2017)].
7.
V. V.
Eremenko
,
V. A.
Sirenko
,
I. A.
Gospodarev
,
Е. S.
Syrkin
,
S. B.
Feodosyev
,
I. S.
Bondar
,
K. A.
Minakova
, and
A.
Feher
, “
Electron spectra of graphene with local and extended defects
,”
J. Phys.: Conf. Ser.
, IOP Publishing
969
,
012021
(
2018
).
8.
P.
Pingel
and
D.
Neher
, “
Comprehensive picture of p-type doping of P3HT with the molecular acceptor F4TCNQ
,”
Phys. Rev. B
87
,
115209
(
2013
).
9.
P.
Sharma
and
A.
Sharma
, “
Half-Heusler compounds: Novel materials for energy and thermoelectric applications
,”
Materials Today: Proceedings
5
,
2437
(
2018
).
10.
X. J.
Zhang
,
J.
Mao
,
C. Z.
Chang
,
L. F.
Liu
,
W. J.
Chen
,
L. L.
Wang
, and
H. C.
Wu
, “
Topological insulators in Bi2Se3, Bi2Te3, and Sb2Te3 with a single dirac cone on the surface
,”
Nature Phys.
5
,
438
(
2009
).
11.
Nvep
Kaur
and
Vpl
Sriva
, “
First-principles calculations on mechanical properties of Rh2MnZn heusler alloy
,”
J. Phys.: Conf. Ser.
2267
,
012038
(
2022
).
12.
P.
Giannozzi
,
S.
Baroni
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresol
,
G.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A.
Corso
,
S.
de Goroncoli
,
S.
Fabris
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokolj
,
M.
Lazzeri
,
L.
Martin-samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
G.
Sclauzero
,
A. P.
Seitsonen
,
A.
Smogunov
,
P.
Umari
, and
R. M.
Wentzcovitch
,
QUANTUM ESPRESSO: A modular and open-source software project from quantum simulations of materials
,”
J. Phys. Condens. Matter
21
,
395502
(
2009
).
13.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
38
(
1996
).
14.
S.
Erden
,
E.
Gulebaglan
, and
K.
Dogan
, “
A comparison study of the structural electronic, elastic and lattice dynamic properties of ZrInAu and ZrSnPt
,”
Z. Naturforsch
76
,
559
(
2021
).
15.
S. F.
Pugh
, “
Relations between the elastic moduli and the plastic properties of polycrystalline pure metals
,”
Lond. Edinb. Dubl. Phil. Mag.
45
,
823
(
2009
).
16.
Y.
Benazouzi
,
H.
Rozale
,
M. A.
Boukli Hacene
,
M.
Khethir
,
A.
Chahed
, and
D.
Lucache
, “
Electronic and Thermoelectric Properties in Li-Based Half-Heusler Compounds: A First Principle Study
(
Annals of West University of Timisoara: Physics
,
2019
).
17.
A. A. M.
Abadi
,
G.
Forozani
,
S. M.
Baizaee
, and
A.
Gharaati
, “
Ab initio calculations of new full heusler alloys Rh2ZrX (X = Al, Ga, In, Si, Ge, Sn)
,”
J. Supercond. Novel Magnetism
32
,
2479
(
2019
).
18.
T.
Ambrose
,
J. J.
Krebs
, and
G. A.
Prinz
, “
Magnetic properties of single-crystal Co2MnGe heusler alloy films
,”
J. Appl. Phys.
87
,
5463
(
2017
).
19.
O. L.
Anderson
, “
A simplified method for calculating the debye temperature from elastic constants
,”
J. Phys. Chem. Solids
24
,
909
(
1963
).
20.
A.
Aryal
,
S.
Bakkar
,
H.
Samassekou
,
S.
Pandey
,
I.
Dubenko
,
S.
Stadler
, and
D.
Mazumdar
, “
Mn2fesi: An antiferromagnetic inverse-heusler alloy
,”
J. Alloys Compounds
823
,
153770
(
2020
).
21.
S.
Baroni
,
P.
Giannozzi
, and
A.
Testa
, “
Green’s-function approach to linear response in solids
,”
Phys. Rev. Lett.
58
,
1861
(
1987
).
22.
L.
Boumia
,
F.
Dahmane
,
B.
Doumi
,
D. P.
Rai
,
S. A.
Khandy
,
H.
Khachai
et al, “
Structural, electronic and magnetic properties of new full heusler alloys Rh2CrZ (Z = Al, Ga, In): First-principles calculations
,”
Chinese J. Phys.
59
,
281
(
2019
).
23.
M.
Born
and
K.
Huang
,
Dynamical Theory of Crystal Lattices
, (
Clarendon press
,
1954
).
24.
P.
Bruski
,
Y.
Manzke
,
R.
Farshchi
,
O.
Brandt
,
J.
Herfort
, and
M.
Ramsteiner
, “
All-electrical spin injection and detection in the Co2FeSi/GaAs hybrid system in the local and non-local configuration
,”
Appl. Phys. Lett.
103
,
052406
(
2013
).
25.
A.
Candan
,
G.
Uğur
,
Z.
Charifi
,
H.
Baaziz
, and
M. R.
Ellialtıoğlu
, “
Electronic structure and vibrational properties in cobalt-based full-heusler compounds: A first principle study of Co2MnX (X = Si, Ge, Al, Ga)
,”
J. Alloys Compounds
560
,
215
(
2013
).
26.
A.
Edström
,
M.
Werwiński
,
D.
Iuşan
,
J.
Rusz
,
O.
Eriksson
,
K. P.
Skokov
et al, “
Magnetic properties of (Fe1−xCox)2B alloys and the effect of doping by 5d elements
,”
Phys. Rev. B
92
,
174413
(
2015
).
27.
J.
Enkovaara
,
A.
Ayuela
,
A. T.
Zayak
,
P.
Entel
,
L.
Nordström
,
M.
Dube
et al, “
Magnetically driven shape memory alloys
,”
Mater. Sci. Engineering A
378
,
52
(
2004
).
28.
R.
Farshchi
and
M.
Ramsteiner
, “
Spin injection from heusler alloys into semiconductors: A materials perspective
,”
J. Appl. Phys.
113
,
7
(
2013
).
29.
I. N.
Frantsevich
,
F. F.
Voronov
, and
S. A.
Bakuta
,
Elastic Constants and Elastic Moduli of Metals and Nonmetals
(
Naukova Dumka
,
Kyiv
,
1982
), p. 288.
30.
V.
Sirenko
,
I.
Gospodarev
,
E.
Syrkin
,
S.
Feodosyev
, and
K.
Minakova
, “
Low-dimensional features of graphene nanostructure stability and vibrational characteristics
,”
Fiz. Nizk. Temp.
46
,
286
(
2020
) [
Low Temp. Phys.
46, 232 (2020)].
31.
E. S.
Syrkin
,
I. A.
Gospodarev
,
V. A.
Sirenko
,
S. B.
Feodosyev
, and
K. A.
Minakova
,
Peculiarities of Quasi-Particle Spectra in Graphene Nanostructures, Handbook of Graphene
(
Scrivener Publishing LLC
, Vol.
2
, p.
315
(
2019
).
32.
S. B.
Feodosyev
,
V. A.
Sirenko
,
E. S.
Syrkin
,
E. V.
Manzhelii
,
I. S.
Bondar
, and
K. A.
Minakova
, “
Localized and quasi-localized energy levels in the electron spectrum of graphene with isolated boron and nitrogen substitutions
,”
Fiz. Nizk. Temp.
49
,
34
(
2023
) [
Low Temp. Phys.
49, 30 (2023)].
33.
E. B.
Ettah
,
Keia
Minakova
,
M. E.
Ishaje
, and
Vlnya
Sirenko
, “
On the interplay of thermodynamic and structural properties of LiZn-based half-heusler alloys
,”
Fiz. Nizk. Temp.
49
,
1389
(
2023
) [
Low Temp. Phys.
49, 1263 (2023)].
34.
I.
Galanakis
and
P. H.
Dederichs
,
Half-metallicity and Slater-Pauling Behavior in the Ferromagnetic Heusler Alloys, in: Half-Metallic Alloys
(
Springer
,
Berlin, Heidelberg
,
2005
), p. 1.
35.
E. B.
Ettah
and
M. E.
Ishaje
, “
First principles calculation of the mechanical properties of half-heuslers alloy LiZnX (X = As, P, and Sb)
,”
Intern. J. Innovative Sci., Engineering, and Technology
, Vol.
10
, Issue
07
. ISSN (Online),
2348
(
2023
).
You do not currently have access to this content.